河南省创新联盟大联考2023-2024学年高一下学期开学考试 数学 含解析

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 18 页
  • 大小 807.060 KB
  • 2025-01-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
河南省创新联盟大联考2023-2024学年高一下学期开学考试 数学 含解析
可在后台配置第一页与第二页中间广告代码
河南省创新联盟大联考2023-2024学年高一下学期开学考试 数学 含解析
可在后台配置第二页与第三页中间广告代码
河南省创新联盟大联考2023-2024学年高一下学期开学考试 数学 含解析
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有2人购买 付费阅读2.40 元
/ 18
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】河南省创新联盟大联考2023-2024学年高一下学期开学考试 数学 含解析.docx,共(18)页,807.060 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-0b244fafb6da8f7168d3115e2ab8de3f.html

以下为本文档部分文字说明:

数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案

标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|02},0,1,2AxxB==,则AB=()A.1B.

0,1C.1,2D.02.已知命题p:“0x,3lg10xx−+”.则p的否定是()A.0x,3lg10xx−+B.0x,3lg10xx−+C.0x,3lg10xx−+D.0x,3lg10xx−+3.已知数据1x,2x,

…,nx的方差为2s,数据11ax−,21ax−,…,1nax−的方差为24s.则=a()A.1B.2C.2D.2−4.已知()()221223kfxkkxm+=+++−是幂函数,则()fm=()A.3B.23C.6D.135.珠算作为非物质文化遗产,是中华文明的鲜明体现.算盘的每个档(挂

珠的杆)上有7颗算珠,用梁隔开,梁上面的2颗珠叫“上珠”,梁下面的5颗叫“下珠”,则从算盘内任取一颗珠子是“下珠”的概率为()A.57B.27C.12D.136.河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游资源,在旅游业蓬勃发展的带动下,餐饮

、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x元(110x,xZ),则被租出的客房会减少15x套.若要使该连锁酒店每天租赁客房的收入超过106600元,

则该连锁酒店每间客房每天的定价应为()A.250元B.260元C.270元D.280元7.已知函数()()()32231,log31,31xfxxgxxxhxxx=++=++=++的零点分别是,,abc,则,,abc的大小关系为()Aa

cbB.bcaC.bacD.abc8.已知函数243,2()log,2axxxfxxx−−−−=−(0a且1a)是值域为R的单调递减函数,则()2fx的解集为()A.2

3,2−−−B.4,32−−C.23,32−−−D.()4,−+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知x,y是两个正

实数,则下列不等式恒成立的是()A.222xyxy+B.33332yxxy+C.2yxxy−D.当1xy+=时,12922xy+10.某射击运动员射击10次,中靶环数分别7,8,9,7,6,5,10,9,5,7(单位:环),则()A.这组数据的中位数与众数相等B.这组

数据的30%分位数与极差相等C.若有放回地抽取两个数,则“一个小于8一个大于8”和“两个数都大于7”是互斥事件D.若不放回地抽取两个数,则“两个数都小于8”和“两个数都大于7”是对立事件11.已知函数()fx,()gx的定义域均为R,()()()11fxfxf

x++−=,()3gx−是偶函数,且()()32fxgx+−=,若()31g−=,则()A.()112f=B.()fx的图象关于点3,02中心对称C.()()6fxfx=+D.()fx为奇函数三、填空题:本题共3小题

,每小题5分,共15分..是12.函数()2lg32fxxx=−+的定义域为______.13.甲、乙两个篮球队进行比赛,获胜队将代表所在区参加市级比赛,他们约定,先赢四场比赛队伍获胜.假设每场甲、乙两队获胜的概率均为12,每场比赛不存在平局且比赛结果相互独立,若在前三场比赛中,甲队赢了两场,乙队

赢了一场,则最终甲队获胜的概率为______.14若函数()()424log21()xfxxa=+++满足()()fxxfxx+=+,则=a__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.1

5.已知p:实数x满足2120,xxq+−:实数x满足222520xmxm−+.(1)若2m=,且p和q至少有一个为真命题,求实数x的取值范围;(2)若0m,且q是p充分不必要条件,求实数m的取值范围.16.立定跳远是高

中生体能测试的项目之一.对某同学在11月和12月立定跳远练习成绩(单位:米)统计如下:11月2.302.252.342.302.222.362.382.3312月2.402.332.382.432.412.442.40

2.41(1)设11月和12月立定跳远练习成绩的平均数分别为1x,2x,方差分别为21s,22s,求1x,2x,21s,22s;(2)当221221210ssxx+−时,则说明成绩没有明显提高,反之,则说明成绩有明显提高.通过计算,判断该同学12月立定跳远成绩比11月

是否有明显提高?17.已知函数()2221fxxx−=−+,函数()()1gxfxx=.(1)求函数()gx的解析式;(2)试判断函数()gx在区间()1,+上的单调性,并证明;(3)求函数()gx的值

域.18.比亚迪是我国乃至全世界新能源电动车的排头兵,某比亚迪新能源汽车销售部为了了解广大客户对新能源性能的需求,随机抽取200名用户进行了问卷调查,根据统计情况,将他们的年龄按)20,30,)30,40,)40,50,)50,60,60,70分组,并绘制出了频率

分布直方图如图所示.的.的(1)估计样本数据中用户年龄的中位数;(2)销售部从年龄在)20,30,)50,60内的样本中用分层抽样的方法抽取8人,再从这8人中随机抽取2人进行电话回访,求这2人取自不同年龄区间的概率.19.已知函数()122xxfxa=+(aR且0a)是偶函数.(

1)求实数a的值;(2)若()()22xagxfx=−,且对于xR,不等式()2232404gxxgmm−−+−++恒成立,求整数m的取值集合.数学注意事项:1.答卷前,考生务必将自己的姓名、

准考证号填写在答题卡上,并将条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上

无效.3.考试结束后,将本试卷和答题卡一并收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|02},0,1,2AxxB==,

则AB=()A.1B.0,1C.1,2D.0【答案】A【解析】【分析】由绝对值不等式和集合的交集运算得到结果.【详解】由()()2,00,2,0,1,2AB=−=,则1AB=.故选:A.2.已知命题p:“0x,3lg10xx−+”.则p的否定是()A.0x

,3lg10xx−+B.0x,3lg10xx−+C.0x,3lg10xx−+D.0x,3lg10xx−+【答案】D【解析】【分析】全称量词命题的否定为特称量词命题,把任意改为存在,把结论否定.【详解】p的否定是“0x,3lg10xx−+”.故选:D.3.已知数

据1x,2x,…,nx的方差为2s,数据11ax−,21ax−,…,1nax−的方差为24s.则=a()A.1B.2C.2D.2−【答案】C【解析】【分析】由方差的性质得到11ax−,21ax−,…,1nax−的方差为22as,从而得到方程,求出答案.【详解】已知样本数据12,,,nxxx的平均

数为x,方差为2s,记数据12,,naxbaxbaxb+++,的平均数为x,方差为2s,则()1212nnaxxxbaxbaxbaxbxnnn++++++==++++anxbaxbnn=+=+,()()()()2222211222nnaxxxxaxbaxbaxbaxbsasn

n−++−−−++−−===++,故11ax−,21ax−,…,1nax−的方差为22as,所以24a=,则2a=.故选:C.4.已知()()221223kfxkkxm+=+++−是幂函数,则()

fm=()A.3B.23C.6D.13【答案】D【解析】【分析】由幂函数的性质得出结果即可.【详解】由题知2221kk++=,解得1k=−,且30m−=,解得()()()1113,,33mfxxfmfx−=====.故选:D5.珠

算作为非物质文化遗产,是中华文明的鲜明体现.算盘的每个档(挂珠的杆)上有7颗算珠,用梁隔开,梁上面的2颗珠叫“上珠”,梁下面的5颗叫“下珠”,则从算盘内任取一颗珠子是“下珠”的概率为()A.57B.27C.12D.1

3【答案】A【解析】【分析】根据古典概型公式求解.【详解】由题知,从算盘内任取一颗珠子是“下珠”的概率,等于从算盘的每个档(挂珠的杆)内任取一颗珠子是“下珠”的概率,即57.故选:A.6.河南是华夏文明的主要发祥地之一,众多的文物古迹和著名的黄河等自然风光构成了河南丰富的旅游

资源,在旅游业蓬勃发展的带动下,餐饮、酒店、工艺品等行业持续发展.某连锁酒店共有500间客房,若每间客房每天的定价是200元,则均可被租出;若每间客房每天的定价在200元的基础上提高10x元(110x,xZ),则被租出的客房会减少15x套.若要使该连锁酒店每天租

赁客房的收入超过106600元,则该连锁酒店每间客房每天的定价应为()A.250元B.260元C.270元D.280元【答案】C【解析】【分析】根据题意列出不等式求解.【详解】依题意,每天有()50015x−间客房被租出

,该连锁酒店每天租赁客房的收入为()()250015200101502000100000xxxx−+=−++.因为要使该连锁酒店每天租赁客房的收入超过106600元,所以21502000100000106600xx−++,即23401320xx−+,解得2263x.因为110

x且xZ,所以7x=,即该连锁酒店每间客房每天的租价应定为270元.故选:C.7.已知函数()()()32231,log31,31xfxxgxxxhxxx=++=++=++的零点分别是,,abc,则,,abc的大小关系为()A.acbB.bcaC.bac

D.abc【答案】B【解析】【分析】令()()()0,0,0fxgxhx===,从而将问题转化为2xy=、2logyx=、3yx=与31yx=−−交点的横坐标,画出函数图象,数形结合即可判断.【详解】令()()()0,0,0fxgxhx===,得

32231,log31,31xxxxxx=−−=−−=−−,则a为函数2xy=与31yx=−−交点的横坐标,b为函数2logyx=与31yx=−−交点的横坐标,c为函数3yx=与31yx=−−交点的横坐标,在同一直角坐标系中,分别

作出322,log,xyyxyx===和31yx=−−的图象,如图所示,由图可知,bca故选:B8.已知函数243,2()log,2axxxfxxx−−−−=−(0a且1a)是值域为R单调递减函数,则()2fx

的解集为()A.23,2−−−B.4,32−−C.23,32−−−D.()4,−+【答案】B【解析】【详解】因为函数()fx是值域为R的单调递减函数,知()2log24831af−=

=−+−=,解得2a=,2243,2()log,2xxxfxxx−−−−=−,函数图像如图,由()2fx,即()22fx−,.的令224322xxx−−−−−,解得2232232xx−−−+−,即232x

−−,令22log22xx−−,解得1442xx−,即42x−−,综上,432x−−,()2fx的解集为4,32−−,故选:B.二、选择题:本题共3小

题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知x,y是两个正实数,则下列不等式恒成立的是()A.222xyxy+B.3

3332yxxy+C.2yxxy−D.当1xy+=时,12922xy+【答案】BD【解析】【分析】对于AB,由基本不等式即可判断;对于C,举反例即可推翻;对于D,由乘“1”法结合基本不等式即可判断.【详解】对于A,222224xyxyxyxy+++

=,当且仅当xy=时取等号,故A错误;对于B,当0x,0y时,3333333322yxyxxyxy+=,当且仅当xy=时取等号,故B正确;对于C,取1xy==,得0yxxy−=,故C错

误;对于D,当1xy+=时,()12125252922222222yxyxxyxyxyxyxy+=++=+++=,当且仅当2yx=,即13x=,23y=时取等号,故D正确.故选:BD.10.某射击运动员射击10次,中靶环数分别是7,8,9,7,6,5,

10,9,5,7(单位:环),则()A.这组数据的中位数与众数相等B.这组数据的30%分位数与极差相等C.若有放回地抽取两个数,则“一个小于8一个大于8”和“两个数都大于7”是互斥事件D.若不放回地抽取两个数,则“两个数都小于8”和“两

个数都大于7”是对立事件【答案】AC【解析】【分析】根据众数、中位数、百分位数、极差、互斥事件与对立事件的定义,利用枚举法,通过计算,可得答案.【详解】由题知,这组数从小到大排列为5,5,6,7,7,7,8,9,9,10,所以这组数据的众数为7,中位数是()7727+=,所

以这组数据的中位数与众数相等,故A正确;因为100.33=,所以这组数据的30%分位数为()6726.5+=,极差为1055−=,不相等,故B错误;若有放回地抽取两个数,则“一个小于8一个大于8”的事件包含()()()()()()5,9,

6,9,7,9,5,10,6,10,7,10共六种,“两个数都大于7”的事件包含()()()()()()8,8,8,9,8,10,9,9,9,10,10,10共六种,故C正确;若不放回地抽取两个数,则“两个数都小于8”的事件包含()()()(

)()5,5,5,6,5,7,6,7,7,7共五种,“两个数都大于7”的事件包含()()()()8,9,8,10,9,9,9,10共四种,故D错误.故选:AC.11.已知函数()fx,()gx的定义域均为R,()()()11fxfxfx++−=,()3gx−是偶函数,且()()32fxgx

+−=,若()31g−=,则()A.()112f=B.()fx的图象关于点3,02中心对称C.()()6fxfx=+D.()fx为奇函数【答案】ABC【解析】【分析】利用赋值法推出函数的奇偶性,结合赋值法求出()01f=,即可求得()1f,判断A;利用变量代

换,推出()()30fxfx−++=,即可判断B;利用()()3fxfx=−+可推出函数周期,判断C;结合A的分析,可判断D.【详解】由题意知函数()fx,()gx的定义域均为R,()()32fxgx+−=,则()()32fxgx−+−−=,因为()3gx−是偶函数

,所以()()()()()()3323fxgxfxgxfxgx−+−−=−+−==+−,所以()()fxfx=−.即()fx为偶函数,令0x=,则()()032fg+−=,又()31g−=,所以()01f=,又()()()11fxfxfx++−=,令0x=,所以()()()112(1)01

ffff+−===,所以()112f=,故A正确;由()()()11fxfxfx++−=,得()()()21fxfxfx+−=−,两式相加得()()12fxfx−+=−,所以()()3fxfx=−+,又()()fxfx=−,所以()()3fxfx−=−+,即()()30fxf

x−++=,所以()fx的图象关于点3,02中心对称,故B正确;由()()3fxfx=−+得()()3fxfx+=−,故()()()63fxfxfx+=−+=,故C正确;由()()fxfx=−可知(

)fx为偶函数,且()112f=,即()fx不恒等于0,即()fx不是奇函数,D不正确,故选:ABC.【点睛】方法点睛:(1)涉及抽象函数的求值问题,往往采用赋值法,即令x取特殊值;(2)涉及到抽象函数的奇偶性、对称性以及周期性问

题,往往要结合赋值和相应的定义去解决.三、填空题:本题共3小题,每小题5分,共15分.12.函数()2lg32fxxx=−+的定义域为______.【答案】()(),12,−+【解析】【分析】由()2lg32fxxx=−+,使得这个式子有意义只需2320xx−+,求

解即可.【详解】由题得2320xx−+,解得1x或2x,即函数()fx的定义域为()(),12,−+.故答案为:()(),12,−+.13.甲、乙两个篮球队进行比赛,获胜队将代表所在区参加市级比赛,

他们约定,先赢四场比赛的队伍获胜.假设每场甲、乙两队获胜的概率均为12,每场比赛不存在平局且比赛结果相互独立,若在前三场比赛中,甲队赢了两场,乙队赢了一场,则最终甲队获胜的概率为______.【答案】1116##0.6875【

解析】【分析】考虑先赢四场比赛的队伍获胜,甲队已经赢了两场,故只需再先赢两场则获胜,分析得到甲在随后进行的场次可以有两场连胜,也可输一场赢两场(含两种情况),还可以输两场赢两场(含三种情况),分别计算概率,再利用互斥事件的概率加法公式即得.【详解】由题意得甲、

乙两队获胜的概率均为12,且最多再进行四场比赛,最少再进行两场比赛.则①再进行两场比赛甲队获胜的概率为111224=;②再进行三场比赛甲队获胜的概率为11111112222224+=;③再进行

四场比赛甲队获胜的概率为111111111322222222216111222++=,由互斥事件的概率加法公式,可得最终甲队获胜的概率为11311441616++=.故答案为1116.14.若函数()()424log21()xfx

xa=+++满足()()fxxfxx+=+,则=a__________.【答案】1−【解析】【分析】根据题意,由条件可得()yfxx=+是偶函数,然后结合偶函数的性质,代入计算,即可得到结果.【详解】函数()fx满足()()fxxfxx+=+,则()y

fxx=+是偶函数,所以()()20fxfxx−−+=,即()()44421log42242021xxaxxax−+++=++=+,所以1a=−.故答案为:1−四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知p:

实数x满足2120,xxq+−:实数x满足222520xmxm−+.(1)若2m=,且p和q至少有一个为真命题,求实数x的取值范围;(2)若0m,且q是p的充分不必要条件,求实数m的取值范围.【答案】(1)4,4−(2)30,2【解析】【分析】(1)根据题意解一元二次不等式得

命题,pq,结合命题真假确定取值范围;(2)利用充分条件、必要条件的定义解不等式即可.【小问1详解】p:实数x满足2120xx+−,解得43x−.当2m=时,2:540qxx−+,解得14x,p和q至少有一个为真命题,44x−,实数x的取值范围为

4,4−.【小问2详解】0,m由222520xmxm−+,解得122mxm,即1:2,2qmxmq是p的充分不必要条件,14223mm−(等号不同时取),382m−,又30,02mm,故实数m的取值范围为30,216.立定跳远是高中生

体能测试项目之一.对某同学在11月和12月立定跳远练习成绩(单位:米)统计的如下:11月2.302.252.342.302.222.362.382.3312月2.402.332.382.432.412.442.402.41

(1)设11月和12月立定跳远练习成绩的平均数分别为1x,2x,方差分别为21s,22s,求1x,2x,21s,22s;(2)当221221210ssxx+−时,则说明成绩没有明显提高,反之,则说明成绩有明显提高.通过计算,判断该同学12月立定跳远成绩比11月是否有明显提高?【答案】(1

)2.31,2.40,2110340000s=,2211000s=(2)小明12月立定跳远成绩比11月是有明显提高.【解析】【分析】(1)由平均数、方差公式逐一代入数据求解即可;(2)分别计算出22122

1,210ssxx+−,并比较大小即可.【小问1详解】()112.302.252.342.302.222.362.382.332.318x=+++++++=,()212.402.332.382.432.412.442.402.412.408x=+

++++++=,()222222222111030.010.060.030.010.090.050.070.02840000s=+++++++=,()22222222221100.070.020.030.010.0400.0181000s=+++++++=.【小问2详解】因为122122143

2.402.310.09,2210400000sxxs+−=−==,则()2210.0081xx−=,2221220.0014310ss+=,所以221221210ssxx+−,故小明12月立定跳远成绩比11

月是有明显提高.17.已知函数()2221fxxx−=−+,函数()()1gxfxx=.(1)求函数()gx的解析式;(2)试判断函数()gx在区间()1,+上的单调性,并证明;(3)求函数()gx值域.【答案】(1)()12gx

xx=++(2)()gx在区间()1,+上单调递增,证明见解析(3)(),04,−+【解析】【分析】(1)用换元法先求出()221fxxx=++,再代入已知求出()gx的解析式即可.(2)

用函数单调性的定义证明即可,设121xx,作差通分计算即可.(3)分0x和0x时用基本不等式求出结果即可,注意取等号的条件.【小问1详解】令2tx=−,则2xt=+,()()2(2)221fttt=+−++,()221ft

tt=++,即()221fxxx=++,()()12fxgxxxx==++.【小问2详解】函数()gx在区间()1,+上单调递增.证明:任取121xx,则()()()()12121212121211122xxxxgxgxx

xxxxx−−−=++−++=,又1212120,10,0xxxxxx−−,()()120gxgx−,即()()12gxgx,的函数()gx在区间()1,+上是增函数.【小问3详解】当0x时,()1122

24gxxxxx=+++=,当且仅当1x=时,等号成立.当0x时,()()()11122220gxxxxxxx=++=−−+−+−−−+=,当且仅当=1x−时,等号成立.()gx的值域为(),0

4,−+.18.比亚迪是我国乃至全世界新能源电动车的排头兵,某比亚迪新能源汽车销售部为了了解广大客户对新能源性能的需求,随机抽取200名用户进行了问卷调查,根据统计情况,将他们的年龄按)20,30,)30,40,)40,50,)50,6

0,60,70分组,并绘制出了频率分布直方图如图所示.(1)估计样本数据中用户年龄的中位数;(2)销售部从年龄在)20,30,)50,60内的样本中用分层抽样的方法抽取8人,再从这8人中随机抽取2人进行电话回访,求这2人取自不同年龄区间的概率.【答案】(1)中

位数为45(2)1528.【解析】【分析】(1)根据频率分布直方图,结合中位数的定义,可得答案;(2)根据分层抽样的概念,利用枚举法,结合古典概型的概率计算方法,可得答案.【小问1详解】由频率分布直方图可知,年龄小于4

0岁的用户所占比例为15%20%35%+=,年龄小于50岁的用户所占比例为35%30%65%+=,所以中位数一定在)40,50内,由0.50.354010450.650.35−+=−,所以估计用户年龄的样本数据的中位数为45.【小问2详解】由

分层抽样的方法可知,抽取的8人中,年龄在)20,30内的有3人,分别记为1A,2A,3A;年龄在)50,60内的有5人,分别记为1B,2B,3B,4B,5B;则从这8人中随机抽取2人的样本点为12,AA,13,AA,11,AB,12,AB,

13,AB,14,AB,15,AB,23,AA,21,AB,22,AB,23,AB,24,AB,25,AB,31,AB,32,AB,33,AB,34,AB,35,AB,12,BB,13,BB,14,BB,1

5,BB,23,BB,24,BB,25,BB,34,BB,35,BB,45,BB共28种;记这2人取自不同年龄区间为事件A,其包含样本点有11,AB,12,AB,13,AB,14,AB,15,AB,21,A

B,22,AB,23,AB,24,AB,25,AB,31,AB,32,AB,33,AB,34,AB,35,AB,共15种,故这2人取自不同年龄区间的概率为()1528PA=.19.已知函数()122xxfxa

=+(aR且0a)是偶函数.(1)求实数a的值;(2)若()()22xagxfx=−,且对于xR,不等式()2232404gxxgmm−−+−++恒成立,求整数m的取值集合.【答案】(1)1(2)0,1,2

.【解析】【分析】(1)由题意可得()()fxfx−=,即可得解;(2)先求出函数()gx的解析式,再判断其单调性即奇偶性,再根据函数的单调性和奇偶性解不等式即可.【小问1详解】函数()122xxfxa=+(aR且0a)是偶函数,()()fxfx−=,即1

112222xxxxaa+=+,即111202xxa−−=,1a=;【小问2详解】由(1)知,()()21222xxxagxfx=−=−,定义域为R,因为12,2xxyy==−都是增函数,所以函数()gx在R上单调递

增,因为()()122xxgxgx−=−=−,所以函数()gx为奇函数,对于xR,()2232404gxxgmm−−+−++恒成立,即()()222324244gxxgmmgmm−−−−++=−−,223244xxmm−−−−对于xR恒成立,对于xR

,22311142yxxx=−−=−−−,2241mm−−−,即2230mm−−,解得13m−,又m为整数,0m=或1m=或2m=,m的取值集合为0,1,2.【点睛】结论点睛:利用参变

量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)xD,()()minmfxmfx;(2)xD,()()maxmfxmfx;(3)xD,()()maxmfxmfx;(4)xD,()()minmfxmfx.

管理员店铺
管理员店铺
管理员店铺
  • 文档 467379
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?