【文档说明】山东省青岛市2022届高三上学期11月期中教学质量检测数学试题答案.doc,共(5)页,394.000 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-fc64f3fcee1bf8c86507d9a8e6a974aa.html
以下为本文档部分文字说明:
2021.11高三期中答案一、选择题题号123456789101112答案DCADABCDBCDADACAD二、填空题13.214.8−15.823m16.2+1n,33232nn+−三、17.(本小题满分10分)解:(1)由正弦定理得:sincos3
sinsinsinsinBABAAC+=+·······sinsin()sincoscossinCABABAB=+=+sincos3sinsinsinsinsinsincoscossinBABAACAABAB+=+=++3sinsinsinsinsinsincosB
AACAAB=+=+·············3sin1cosBB=+2sin()16B−=3B=·······································5分(2)由余弦定理2222cosbacacB=
+−得:2232cos3acac=+−2()393acacac=+−=−2ac=········································8分13sin22ABCSacB==·············
··········10分18.(本小题满分12分)解:(1)设0x0x−2()(1)fxx−=−2()(1)fxx=−−又()fx是定义在R上的奇函数,(0)0f=22(1),(,0)()00(1),(0,)xxfxxxx−−−==++
·······································6分(2)()(2)0xxfaefe−+−−()(2)xxfaefe−−−−恒成立()fx是定义在R上的奇函数()(2)xxfaefe−+·······················
······················8分又()fx在R上递增2xxaee−+··················································10分2()2xxaee+令,(
0)xett=22att+恒成立220tt+0a···············································12分19.(本小题满分12分)解(1)53()sin(2)2sin()cos()644fxxxx
=−−−+13cos2sin2(sincos)(sincos)22xxxxxx=++−+sin(2)6x=−····································4分单调增区间为,,63kkkZ−+········
·····················6分(2)70,12x,2,66tx=−−1sin(2),162tx=−−,|sin|yt=的图象如图要使在|sin|ytm=−在,6−有两个零点112m······
·························12分20.(本小题满分12分)解:(1)连接ECBD,交点为O,连接MO//ABCD,BECD=6−121CBED为平行四边形O为DB中点,又点M为棱PB的中点//MOPD······
····································2分PD面MCE,MO面MCE//PD面MCE···········································4分(2)四
边形CBED为平行四边形,四边形ABCD为等腰梯形EDCBPD==又45BAD=PDDE⊥························6分又面PDE⊥平面EBCD,面PDEEBCDDE=,PD面P
DEPD⊥面CBED··························8分所以,可以如图以D为原点,,DPDC为,zy轴,在平面CBED中过D做与面DCP垂直的有向直线为x轴,建立空间直角坐标系.(0,0,2)P,(1,1,0)E,(1,3,0)B,(0,2,0)C(1,3,2
)PB=−,(1,1,2)PE=−,(1,1,0)EDBC==−−设1111(,,)nxyz=为平面PDE的一个法向量则11111200xyzxy+−=+=解得1(1,1,0)n=−同理得:平面PBC的一个法向量2(2,2,2)n=−····
·················10分设平面PBE与平面PBC的夹角为则12122cos||2||||nnnn==平面PDE与平面PBC的夹角为45·····················12分21.(本小题满分12
分)解:(1)123(1)1(1)221nnnnnnanaaan+−−+−=+=+,为奇数,为偶数21+1+1nnba−=2212123(1)1(1)1122nnnnnbaa++−−+−+=+=+22-1+21211=1=22
2(1)2(1)nnnnnaaaab−−=+++=+=+()1数列1nb+为以2为首项,公比为2的等比数列.·····························6分DPEBC(1)由(1)知12nnb+=21nnb=−2312
22322(123)nnSnn=++++−++++令231222322nnTn=++++234121222322nnTn+=++++2341222222nnnT
n+−=+++++−112(21)2(1)22nnnnn++=−−=−−1(1)22nnTn+=−+···················································10分(1)1232nnn+++++=·················
·····························11分1(1)(1)222nnnnSn++=−−+···········································12分22.(本小题满分12分)解:(1)21ln()2xfxxx+=−+2211ln
ln()44xxfxxxxx−−−=−+=−+·····························2分211ln(1)44xfxx−−=−+=−,(1)1f=−切线方程为43yx=−+···
··································5分(2)不等式()()gxfx在(0,)+恒成立即21lnxxeax+−恒成立令21ln()xxhxex+=−,(0,)x+22222ln2ln()2xxxxexhxexx+
=+=····································6分令2221()2ln,()4(1)0,(0,)xxxxexxxxexx=+=+++()x在区间(0,)+为增函数,且122242()20,(1)20eeeee−
−=−=20(,1)xe−,满足022000()2ln0xxxex=+=,则0(0,),()0,()xxhxhx为减函数0(,),()0,()xxhxhx+为增函数··································9分所以,020min001ln()(
)xxhxhxex+==−又因为022000()2ln0xxxex=+=02000ln20xxxex+=,001ln20000ln12lnxxxxeexx=−=··························10分又
因为xyxe=在(0,)+为增函数所以,0012lnxx=,0201xex=min0()()2hxhx==2a····················································1