【文档说明】山东省青岛市2022届高三上学期11月期中教学质量检测数学试题答案.doc,共(5)页,394.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-fc64f3fcee1bf8c86507d9a8e6a974aa.html
以下为本文档部分文字说明:
2021.11高三期中答案一、选择题题号123456789101112答案DCADABCDBCDADACAD二、填空题13.214.8−15.823m16.2+1n,33232nn+−三、17.(本小题满分10分)解:(1)
由正弦定理得:sincos3sinsinsinsinBABAAC+=+·······sinsin()sincoscossinCABABAB=+=+sincos3sinsinsinsinsinsincosco
ssinBABAACAABAB+=+=++3sinsinsinsinsinsincosBAACAAB=+=+·············3sin1cosBB=+2sin()16B−=3B=
·······································5分(2)由余弦定理2222cosbacacB=+−得:2232cos3acac=+−2()393acacac=+−=−2ac=································
········8分13sin22ABCSacB==·······················10分18.(本小题满分12分)解:(1)设0x0x−2()(1)fxx−=−2()(1)fxx=−−又()fx是定义在R上的奇函数,(0)0f=22(1),(,0)()
00(1),(0,)xxfxxxx−−−==++·······································6分(2)()(2)0xxfaefe−+−−()(2)xxfaefe−−−−恒成立()fx是定义在
R上的奇函数()(2)xxfaefe−+·············································8分又()fx在R上递增2xxaee−+··························
························10分2()2xxaee+令,(0)xett=22att+恒成立220tt+0a···············································1
2分19.(本小题满分12分)解(1)53()sin(2)2sin()cos()644fxxxx=−−−+13cos2sin2(sincos)(sincos)22xxxxxx=++−+sin(2)6x=−··························
··········4分单调增区间为,,63kkkZ−+·····························6分(2)70,12x,2,66tx=−
−1sin(2),162tx=−−,|sin|yt=的图象如图要使在|sin|ytm=−在,6−有两个零点112m·······························12分20.(本小题满分1
2分)解:(1)连接ECBD,交点为O,连接MO//ABCD,BECD=6−121CBED为平行四边形O为DB中点,又点M为棱PB的中点//MOPD··························
················2分PD面MCE,MO面MCE//PD面MCE···········································4分(2)四边形CBED为平行四边形
,四边形ABCD为等腰梯形EDCBPD==又45BAD=PDDE⊥························6分又面PDE⊥平面EBCD,面PDEEBCDDE=,PD面PDEPD⊥面CBED············
··············8分所以,可以如图以D为原点,,DPDC为,zy轴,在平面CBED中过D做与面DCP垂直的有向直线为x轴,建立空间直角坐标系.(0,0,2)P,(1,1,0)E,(1,3,0)B,(0,2,0)C(1,3,2)PB=−,(1
,1,2)PE=−,(1,1,0)EDBC==−−设1111(,,)nxyz=为平面PDE的一个法向量则11111200xyzxy+−=+=解得1(1,1,0)n=−同理得:平面PBC的一个法向量2(2,2,2)n
=−·····················10分设平面PBE与平面PBC的夹角为则12122cos||2||||nnnn==平面PDE与平面PBC的夹角为45·····················12分21.(本小题满分12分)解:(1)123(1)1(
1)221nnnnnnanaaan+−−+−=+=+,为奇数,为偶数21+1+1nnba−=2212123(1)1(1)1122nnnnnbaa++−−+−+=+=+22-1+21211=1=222(1)2(1)nnnnnaaaab−−=+++=+=+()1数列1
nb+为以2为首项,公比为2的等比数列.·····························6分DPEBC(1)由(1)知12nnb+=21nnb=−231222322(123)nnSnn=++++−++++令231222322nnTn=++++234121
222322nnTn+=++++2341222222nnnTn+−=+++++−112(21)2(1)22nnnnn++=−−=−−1(1)22nnTn+=−+·············
······································10分(1)1232nnn+++++=··············································11分1(1)(1)222nnnnSn++=−−+··············
·····························12分22.(本小题满分12分)解:(1)21ln()2xfxxx+=−+2211lnln()44xxfxxxxx−−−=−+=−+·····························2分211ln(1)44xfxx−
−=−+=−,(1)1f=−切线方程为43yx=−+·····································5分(2)不等式()()gxfx在(0,)+恒成立即21lnxxeax+−恒成立令21ln()xxhxex+=−,(0,)x+222
22ln2ln()2xxxxexhxexx+=+=····································6分令2221()2ln,()4(1)0,(0,)xxxxexxxxexx=+=++
+()x在区间(0,)+为增函数,且122242()20,(1)20eeeee−−=−=20(,1)xe−,满足022000()2ln0xxxex=+=,则0(0,),()0,()xxhxhx为减函数0(,),()0
,()xxhxhx+为增函数··································9分所以,020min001ln()()xxhxhxex+==−又因为022000()2ln0xx
xex=+=02000ln20xxxex+=,001ln20000ln12lnxxxxeexx=−=··························10分又因为xyxe=在(0,)+为增函数所以,0012lnxx=,0201xex=
min0()()2hxhx==2a····················································1