【文档说明】河北省张家口市尚义县2023-2024学年高三上学期开学考试数学试题答案和解析(数学).pdf,共(8)页,422.948 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-f6cfde41c62a6c2c2c7b0edd59f0a507.html
以下为本文档部分文字说明:
数学第1页新时代NT教育2023-2024学年高三入学摸底考试数学(新高考)参考答案1.D【解析】当A时,a=0,当2A时,1a,当2A时,a=1,1,0,1a.2.B【解析】21i,i.1izz3.B【解析】当,0)2)(2
kk(即22kk或时,12222kykx表示双曲线,所以“2k”是“12222kykx表示双曲线”的充分不必要条件.4.D【解析】由题分析得111)1(1nnnnan,所以1231011111101.223101111aaaa
5.A【解析】224523ababab,3.ab6.C【解析】3tan2tan1tan1)4tan)45tan(,(,54tan1tan1sincos2cos2222
.7.A【解析】11112,11111nnnTTanTannnn时,当时,当,2341,naaaa11a而,为最大项为最小项,21aa.8.D【解析】由已知得函数()fx既关于原点对称,又关于1x对称,所以
周期T=4,1)7()3(2log)(5ggxxg,而设,由函数图像可分析()fx与()gx的交点个数为5.9.AB【解析】22121,0,0abababbaba则若,当且仅当22ba时取等号.∴A正
确;3)(xxf是在R上单调递增的函数,()()fafbab若,则,∴B正确;)单调递减,,在(若0)(,0axxfaaa)53()52(,∴C错误;,0,011baba则若balnln,∴D错误.10.BC【解析】2
22221212(),nnxxxxxxxnn∴A错误;{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}数学第2页,10
1210122xxsii由130)10101222iixsx(,∴B正确;,)得,,(由2)(319~DB8)(4)2(DD,∴C正确;数据2,3,4,7,8,10,17,18的第5
0百分位数是7.5,∴D错误11.ACD【解析】取EFNFMNFABNDB,,,,连结的中点的中点,则四边形EMNF为平行四边形,//,,//MNEFMNBAEMNBAE面面,∴A正确;假设存在一个位置使得BDAE,取AE中点H,连结DHHB,,显然,BHAEBH
BDB,DHAEHDBAE,面,进而有DA=DE,而由题可得DADE3,∴不存在AEDB,故B错误;当BDEC时,则BDADDEAD,而,,ADBDEBDEADE面面面,且BDEADEDE面面,B
到面ADE的距离即B到DE的距离d,2,3,BDEBEBDDE在中,12623,23BDESdd由,∴C正确;当时,面面ABCDAEB四棱锥AECDB的体积最大,此时棱锥的高为3,11331
3BAECDV.∴D正确.12.ACD【解析】设切点)1ln,(mm,,1)(mmfk2,2ln,11lnemmmmm,所以过原点的切线方程为2xye,∴A正确;与)(xf关于xy对称
的函数为1xey,∴B错误;若过点(,)ab有2条直线与()fx相切,则点(a,b)在f(x)上方,即(),bfa即ln1,ba∴C正确;由于,ln1ln12xRxxxx,,∴D正确.13
.56【解析】2yx为偶函数,所以),(,0)32cos()(xxg为奇函数,5,,.326kkZ14.1323【解析】易得棱台的高2h,(3hVSSSS下下棱台上上)1323.15.11【解析】2121)21,0,22(
12[2(1)]()271111ababababababba(),22(1)ba时取等号.{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAAB
iAFABAA=}#}数学第3页16.8【解析】法一:如图建立直角坐标系,2222(,),24(23)AxyABADxyxy设由得:2233163480xyx即:,834302,33ABCABD
ASS所以点的轨迹为以(,)为圆心,半径为的圆,438.3AxABC所以当到轴距离最大时,即为时,面积最大为,2,ADmABmABD法二:设则在中,由余弦定理可知,2222121244cos,54cosmmmAmA
,224sinsin22sin6),(0,)554coscos4ABCABDAASSmAAAA而(,sin453cos4AMNA由右图可知,最小值为直线的斜率,4(6)()8.3ABC故面积的最大值为17.【解析】114
5(1)1,1,,131488abdqaaddqd2,2dq..........................................................................................2分121,2nn
nanb..........................................................................................5分(2)21,(21)21(21)2(21)nnnnnnnScaSnnn
..............7分121232......(21)2[135......(21)]nnTnn21232......(21)2nnSn令23121232......(21)2nnS
n231122(22......2)(21)262)2nnnnSnn(3............9分1126(23)2,6(23)2nnnnSnTnn
............10分18.【解析】(1)由得)sin(sinsinsin)sin(sin)sin(sinCACABBAABAABCABCACAsinsinsinsinsinsinsi
nsin,由正弦定理可得:222()()2acacbacbacacb................................................2分{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgO
xAAEoAABiAFABAA=}#}数学第4页22222212,cos,(0,).223acbacbacBBBac即............................4分2213
(2)sin3,44()242ABCBABCSacBacacBDBDBABC,由,.....8分222222242cos428acacBa
cac,................................................10分2222cos2843242.bacacBb...................
......................................12分19.【解析】,时,设)当(11)(,1)1ln(1)()()(11xexhxexgxfxhaxx1
0,0()0,10()01xexxhxxhxx只有一个解时时,()10)0)hx在(,单调递减,(,单调递增,.....................................
...............................2分()(0),(0)0,()0hxhhhx而,()()1fxgx即..................................................
.....4分(2)法一:若1()()1xfxgx(,),恒成立,即:1ln1lnln11xxxaeaeaxaln1ln(1)xxaeaexx即..................................
..............................................6分()ln,()0)mtttmt构造函数易知在(,递增,()(1)xmaemx则不等式为...........
..........................................................................8分111,()(1)xxxxxaexaxxee设()(1),()10)0xxxxxe则在(,递增
,,递减,..................................10分max()(0)1x,1a................................................................................
............12分法二:1()()1xfxgx(,),恒成立,即lnln110xaeax();)ln(1)ln1xFxaexa令(0011(),0,1)11xxFxaeaaexxxx()有唯一实数根,设为,(......
..........................6分00001,lnln(1),1xaeaxxx即00)(1,))Fxxx则(在递减,在(,递增,0min00()()ln(1ln10xFxFxaexa
).....................................................................8分00012ln(1)101xxx即:,1()2ln(1)1,()1)1hxxxhxx设显然在(,单调递减,{#{Q
QABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}数学第5页0000()0,10hhxx而(),则,...............
....................................................................10分000lnln(1),(1,0]axxx,ln0,a1.a...............
.........................................12分20.【解析】(1)取SC中点F,连接,EFFD,,EF分别为,SBSC的中点,//EFBC,12EFBC,底面四边形AB
CD是矩形,P为棱AD的中点,//PDBC,12PDBC.//EFPD,EFPD,故四边形PEFD是平行四边形,//PEFD\...................................................................2分又FD
平面SCD,PE平面SCD,//PE∴平面SCD...........................................4分(2)以点P为原点,PA,PS的方向分别为,xz
轴的正方向,建立如图所示的空间直角坐标系,设AD=2,则0,0,0P,1,0,0A,1,1,0B,0,0,3S............................................6分1110232,0,330nPBSMMAMPMBnnPM
若(,,)设面的法向量为12(3,3,2),(0,1,0)nSADn取取面的法向量.....................9分12121230cos,10nnnnnn...
..................................................11分3010SADPMB面和面夹角的余弦值为...............................12分21.【解析】(1)同学甲在游戏终止时成功通过两个关卡的概
率P=9132213221............4分(2)同学甲成功通过关卡的个数ξ的值为0,1,2.......................................................................6分P(ξ=0)=18113
121312121312121P(ξ=1)=185231213221213221P(ξ=2)=9132213221..........................................................
............11分所以同学甲成功通过关卡的个数ξ的分布列为:.......................................................................12分ξ012P181118519{#{QQABJYIUggCIABAA
ARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}数学第6页22.【解析】由题可得22222224116232abacbaabc22163xy所求椭圆方程为:..........
.............4分22)1(2)(0)Aykxytxt(方法一:设过点的直线为与相切,2221(2)2104(210ykxtxkxkktkytx),1212121
2121281124kktkkkkPAQAkktkkkk,(,分别是直线和的斜率)..............6分设直线PQ为:nmxy,1122(,),(,),PxyQxy2222212)4260,26ymxnmxmnxnxy
得:(则22212212162,214mnxxmmnxx,由0得:03622nm...........................................................
...............8分2121212121k12211221121nmxxnmxxyxyxk,即)1)(2()1)(21221nmxxnmxx()1)(1(212
nmxnmx得:0)1(2))(21()22221212nxxmnnxxmm(,0)21)(1()2)(21()3)222222mnmnmnnnmm((,整理得:016822
2mmmnn,即0)14()12(mnmn,)14(12mnmn或......................................................
.........................10分所以1212mmxyPQmn为:时,直线当,恒过21A点(,),不符合题意;当时,)14(mn直线PQ为:),,恒过点(,即14)4(114xmymmxy,综上,直线PQ恒过定点41)(,.....
............................................................................12分21(2)(0)Aykxytxt方法二:设过点的直线为与相切,2221(2)2104(210ykxtxkxkktkytx
){#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}数学第7页1212121212824kktkkkkPAQAkktkk,(,分别是直线和的斜率).
......6分1)1()2(ynxmPQ:设直线...........................7分椭圆方程:61)1(22)222yx(联立得:0)1()2()1(4)1
(2)1()2()2(4)222ynxmyyynxmxx(22112)24)()4()()14022yyxnmnmxx同除以(得:(..........9
分y1(,)21)2xyx而为与(,连线的斜率12124()2,62141kkmnmnkkm即即代入直线方程得21)(2)6(1)6nxny(,(21)6240nxnyn即...............................
..........................11分41).PQ直线恒过(,.........................................................12分{#{QQABJYIUggCIABAAARgCAQEwCgCQkA
ECAKgOxAAEoAABiAFABAA=}#}获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com