2024年新高考数学一轮复习题型归纳与达标检测 第13讲 函数模型及其应用(达标检测)(原卷版)

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 4 页
  • 大小 94.078 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2024年新高考数学一轮复习题型归纳与达标检测 第13讲 函数模型及其应用(达标检测)(原卷版)
可在后台配置第一页与第二页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第13讲 函数模型及其应用(达标检测)(原卷版)
可在后台配置第二页与第三页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第13讲 函数模型及其应用(达标检测)(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的1 已有2人购买 付费阅读1.60 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第13讲 函数模型及其应用(达标检测)(原卷版).docx,共(4)页,94.078 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-f2ed5c01d42713cf8546889a780cca9a.html

以下为本文档部分文字说明:

《函数模型及其应用》达标检测[A组]—应知应会1.(2019·湖北荆、荆、襄、宜四地联考)某辆汽车每次加油都把油箱加满,表中记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时累计里程(千米)2018年10月1日12350002018年10

月15日6035600(注:“累计里程”指汽车从出厂开始累计行驶的路程)在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升2.(2020·广东广州一模)如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为

T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()3.(2019·芜湖质检)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了

.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.114.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上

截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=145.(多选)一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示

.给出以下4个论断则一定正确的是()A.0点到3点只进水不出水B.3点到4点不进水只出水C.3点到4点总蓄水量降低D.4点到6点不进水不出水6.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,

现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477)()A.6B.9C.8D.77.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其

中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为________元.8.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y(千克)随

时间x(天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.9.(2019·北京高考)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/

盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促

销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.10.某种细菌经30分钟数量变为原来的2倍,且该种细菌的繁殖规律为y=ekt,其中k为常数,t表示时间(单位:时),y表示繁殖后细菌总个数,则k=_____

___,经过5小时,1个细菌通过繁殖个数变为________.11.(2019·咸宁质检)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v

(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求v关于x的函数解

析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.12.近年来,某企业平均每年缴纳的电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电

网,安装这种供电设备的费用(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业平均每年缴纳的电费C(单位:万元)与安装的这种太阳能电池板的面

积x(单位:平方米)之间的函数关系是C(x)=k20x+100(x≥0,k为常数).记y为该企业安装这种太阳能供电设备的费用与该企业今后15年共将缴纳的电费之和.(1)试解释C(0)的实际意义,并建立y关于x的函数关系式;(2)当x为多少时,y取得最小值?最小值

是多少万元?[B组]—强基必备(2019·安徽皖东名校联盟)某公司计划投资开发一种新能源产品,预计能获得10万元~1000万元的收益.现准备制定一个对开发科研小组的奖励方案:奖金y(单位:万元)随收益x(单位:万

元)的增加而增加,且奖金总数不超过9万元,同时奖金总数不超过收益的20%.(1)若建立奖励方案函数模型y=f(x),试确定这个函数的定义域、值域和yx的范围;(2)现有两个奖励函数模型:①y=x150+2;②y=4lgx-3.试分析这两个函数模型是否符合公

司的要求?请说明理由.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?