【文档说明】福建省名校联盟全国优质校2021-2022学年高三下学期2月大联考 数学答案.pdf,共(7)页,319.213 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-ea794c55166da77378250e916149e37b.html
以下为本文档部分文字说明:
名校联盟全国优质校2022届高三大联考数学试题参考答案与评分细则一、选择题:本题共8小题,每小题5分,共40分。1-4:CDAB5-8:DBCB二、选择题:本题共4小题,每小题5分,共20分。9.BC10.ABD11.BD12.ACD三、填空题:本题
共4小题,每小题5分,共20分。13.314.-1015.42ln216.7913(,4)(,]222选填、填空部分题解析:7.2coscos10,故22sin1coscos
,42sincos,则242sinsincoscos18.分别过F1,O,F2作P处的切线的垂线,垂足分别为:N,O1,M21PFF,则MPFNPF21,414cos,432c
os214cos221)coscos(21221211aPFPFMFNFOOd11.由0na,得0c.122nnnacaac,故101na,又根据{}na是等差数列,且na有界,则{}na必为常数列.设nax,
2cxxxc,得2(2)(0,1]ccx,解得02c.12.取AB中点P,CD中点Q.当AB和CD平行时,PQ则为其距离.设AB和CD所在截面的距离为r,由题意25r2214413PQrr222233141411
4PQrrrr设AB和CD公垂线段长度为d,则213dPQOPOQ当AB和CD夹角为时,11sin243466VABCDd当AC为直径时,ABAD,CBCD,若,,,ABCD四点共面,则显然AC
BD,否则,取BD中点E,则BD平面ACE,故BDAC.15.设12()()(1)fxfxtt,则11xt,2txe,则21222txxet,求导可知,ln2t时,21min(2)42ln2xx16.1sin()62x
,则522,666xkkkZ或243x时,246636x,情况①:522646613217226366kkkk,即48843793
322kkkk解得0k时,742情况②:72264665213226366kkkk,即4848337332
2kkkk解得1k时,91322综上所述,的取值范围是7913(,4)(,]222四、解答题:本题共6小题,共70分.17.解:(1)2sinsin2sincosCBAB
,--------------------------------------------------------------1分则有2sin()2sincossinABABB.------------------
----------------------------------2分即2cossinsinABB,------------------------------------------------------------------------3分又sin0B,所以1cos
2A.------------------------------------------------------------------4分由于0A,所以3A.-------------------------------------------------------------
-----5分(2)由3sin()cos722bbBcB可得2πcos()cos73bBcB,-----------------6分又π3A,coscos7bCcB,----------
---------------------------------------------7分7a.-------------------------------------------------------------------------------------------8分由余
弦定理得2222cosabcbcA,227bcbc,27()bcbc,2bc,74bc,3bc.---------------------------------------------------------
9分设BC边上的高为h.11333sin32224ABCSbcA.12ABCSah,133724h,32114h.-----------------------------------------
----------------------------------------------10分18.解:(1)当n>1时,2423nnnSaa,1211423nnnSaa所以111()()2()nnnnn
naaaaaa.--------------------------------------------------------2分0na,12nnaa.-------------------
-----------------------------------------------------3分当n=1时,2111423Saa,得1131aa或(舍).------------------
----------------4分故{}na是以3为首项,2为公差的等差数列,32(1)21nann.------------5分(2)数列{}nb中对应的项1ka之前总项数为(3)234...(1)2kkk,-------6分令(3)502kk,解得8k,
-----------------------------------------------------------------7分此时(3)442kk,故{}nb第50项在9a和10a之间.--------------------------------
---------------------------------8分所以{}nb前50项的和为:241129(...)(22...2)aaa41199()2(21)221aa42297---
-----12分19.解:(1)设平均喜爱程度为x,则711.09515.08525.0753.06515.05505.045x-----------------4分(2)每人分数值在区间[70,80)内的概率114p,在区间[80
,100]内的概率214p,-----------------------------------------------------------------------------------------------------------5分由题意,X的可能取
值为0,1,2,3,4----------------------------------------------------6分2121(0)(1)4PXpp;----------------------------------------------------
-----------7分121121(1)(1)4PXCppp;----------------------------------------------------------8分21122125(2)(1)16PXpCppp;------------
------------------------------------9分12121(3)8PXCpp;---------------------------------------------------------------------10分221(4)16PXp;----
---------------------------------------------------------------------11分故1511312344168162EX---------------------------------------
--------------12分解法2:每人分数值在区间[70,80)内的概率114p,在区间[80,100]内的概率214p,---------------------------------------------------------------------
--------------------------------------5分设抽取一名游客赠送玩偶的个数为Y,Y的可能取值为0,1,2,3,4-------------6分121(0)12PYpp;--------
-----------------------------------------------------------7分11(1)4PYp;---------------------------------
----------------------------------------------8分21(2)4PYp;------------------------------------------------------------------------------
9分故11312444EY--------------------------------------------------------------------------10分由随机抽取2人是相互独立的,则有322EXEY--
---------------------------------12分20.解:(1)连接AC交BD于点O,由AD=BD,CD=CB,得AC⊥BD,--------------------------1分故221()12AOABBD,-----------------------
----------------------------------------2分221()22COCBBD,------------------------------------------------------------------3分由PA∥平面BDE,PA平面PAC,
且平面PAC平面BDE=OE,故PA∥OE,----------------------------------------------------------------------------------------
-------------------5分所以13PEAOPCAC.-------------------------------------------------------------------------------6分解法1:(2)由PB=PD,故
PO⊥BD,又平面PDB⊥平面ABCD,且交线为BD,故PO⊥平面ABCD.------------------------------------------------------------由13PEPC,故1233PBDEPABCDVV,得2PABCD
V.--------------------------------------------------------------------------------------所以11232POBDCO,解得:PO=3.-----
---------------------------------------------在线段CO上取点H,使得13OHOC,则EH∥PO,此时EH⊥平面ABCD.过H作HM⊥CB交CB于M,此时,BC⊥HM,BC⊥
EH,HMEHH,故BC⊥平面EHM,有BC⊥EM,则∠EMH为二面角E-BC-D的平面角.----------10分223EHPO,又23HMOBBCOC,解得:4515HM,2214515EMEHHM,----------------------------
------11分2cos7HMEMHEM,故二面角EBCD的余弦值为27.---------------------12分解法2:建系(2)由PB=PD,故PO⊥BD,又平面PDB⊥平面ABCD,且交线为BD,故PO⊥平面ABCD.------------------------
------------------------------------由13PEPC,故1233PBDEPABCDVV,得2PABCDV.------------------------------所以11232POBDCO,解得:PO=3.-----
---------------------------------------------又PO,BO,CO两两互相垂直,依题意可建立如图所示空间直角坐标系Oxyz,(1,0,0)B,(1,0,0)D,(0,2,0)C,(0,0,3)P,2(0,,2)3E,(1
,2,0)BC,4(0,,2)3EC设平面EBC的一个法向量为(,,)mxyz由1111220403mBCxymECyz,取12z,可得6,3,2m,------
-------------------------10分易知平面BCD的一个法向量为0,0,1n-------------------------------------------------------11分2cos,7mnmnmn,故二面角EBCD的
余弦值为27.-------------------------12分21.解:(1)由题意,点(,0)2pF,由||2PF,则2220()(20)22px,-----------------1分故有02px.------
------------------------------------------------------------------------------------2分将点(,2)2pP带入抛物线方程得:422pp,-------------------------
------------------3分解得:2p.故抛物线E的方程为.24yx.-----------------------------------------------4分(2)设直线AC的方程为:1xmy,---------
-------------------------------------------------5分与24yx联立,得2440ymy.设(,)AAAxy,(,)CCCxy,有4ACyy,-------------------------
-----------------------6分不妨设22212111221122(,2),(,2),(,2),(,2)AttBttCttDtt.则直线AB的斜率122ABktt,------------------------
---------------------------------------7分直线AB的方程为:2221222()ytxttt,------------------------------
---------------8分令0y,得:112xtt,----------------------------------------------------------------------9分同理:2121xtt.------------------------
---------------------------------------------------------11分所以121xx.---------------------------------------------------------------
------------------------12分22.解:(1)当0k时,'()lngxxx,当01x时,'()0gx,()gx递减;当1x时,'()0gx,()gx递增;-------
----------------------------------------------------------------------------------------------------1分当0k时,令'()0gx,得xk或kxe.构造函数()lnsxxx
,11'()1xsxxx,故01x时,()sx递减;1x时,()sx递增.故()(1)1sxs.即lnxx,故xex,有kek.-----------------------------------
--------------------------2分故0xk时,'()0gx,()gx递增;故kkxe时,'()0gx,()gx递减;故kxe时,'()0gx,()gx递增;------------------
-------------------------------------4分综上所述:0k时,()gx的减区间是(0,1),增区间是(1,);0k时,()gx的增区间是(0,)k和(,)ke,减区间是(,
)kke.----------------------------------------------------5分(2)当0k时,'()1lnfxx,令'()0fx,得01xe,当10xe时,'()0fx,()0fx递减;当
1xe时,'()0fx,()0fx递增;故()fx有唯一极值点01xe,此时0111()()4fxfee.-----------------------6分当0k时,1'()(ln)()ln1kfxxkxkxkxx
,由0k,显然'()fx递增;由(1)中结论,lnkk和kek得:()ln0fkkk,()10kkkfee故存在唯一0(,)kxke,使得0()0fx.此时()fx在0(0,)x递减,0(,)x递增.因此,0x是()
fx的唯一极值点.----------------------------------------------------------------7分由0()0fx,则00ln10kxkx,000(1ln)1xxkx,由0k,得
01xe.200000020(ln)()()(ln)(1)xxxfxxkxkx.--------------------------------------------8分故01()4fx
0000(ln)112xxxx,---------------------------------------------------9分令01()xtte上式等价于22(2ln)112tttt2124ln0tttt-----------------------
-----------10分令211()24ln()htttttte,-------------------------------------------------------11分32222
41441(1)(41)(1)'()41tttttthtttttt由114te,故01t时,'()0ht,()ht递减;1t时,'()0ht,()ht递增;因此()(1)0hth,故原式得证.-------------------
-----------------------------------------12分综上所述,01()4fx.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com