《精准解析》湖南省名校2023届普通高等学校招生全国统一考试考前演练一数学试题(原卷版)

DOC
  • 阅读 4 次
  • 下载 0 次
  • 页数 7 页
  • 大小 356.121 KB
  • 2024-10-03 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《精准解析》湖南省名校2023届普通高等学校招生全国统一考试考前演练一数学试题(原卷版)
可在后台配置第一页与第二页中间广告代码
《精准解析》湖南省名校2023届普通高等学校招生全国统一考试考前演练一数学试题(原卷版)
可在后台配置第二页与第三页中间广告代码
《精准解析》湖南省名校2023届普通高等学校招生全国统一考试考前演练一数学试题(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有4人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《精准解析》湖南省名校2023届普通高等学校招生全国统一考试考前演练一数学试题(原卷版).docx,共(7)页,356.121 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-e0cf0bb3c5bc1314c429f08e1b8a06a6.html

以下为本文档部分文字说明:

2023年普通高等学校招生全国统一考试考前演练一数学满分150分时量120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合240,

{12}AxxxBxx=−=−∣∣,则AB=()A.{14}xx−∣B.{02}xx∣C.{10}xx−∣D.{24}xx∣2.已知i是虚数单位,复数()1212i,2izzaa=−=+R在复平面内对应的

点为P,Q,若OPOQ⊥(O为坐标原点),则实数=a()A.2−B.1−C.0D.13.洞庭湿地保护区于长江中游的湖南省,面积168000公顷,为了保护该湿地保护区内的渔业资源和生物多样性,从2003年起全面实施禁渔期制度.该湿地保护区的渔业资源科学研究培殖了一批珍稀类银鱼鱼苗

,从中随机抽取100尾测量鱼苗的体长(单位:毫米),所得的数据如下表:分组(单位:毫米)[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)频数1010m3515n若依上述6组数据绘制的频率分布直方图中,[9

5,100)分组对应小矩形的高为0.01,则该样本中的90%分位数的银鱼鱼苗的体长为(保留一位小数)()A.87毫米B.88毫米C.90.5毫米D.93.3毫米4.函数2||2xyxe=−在–2,2的图象大致为()A.B.C.D.5.在三棱锥ABCD−中,AB⊥平面BC

D,224BCCDCDABBC⊥===,,则三棱锥ABCD−的外接球的表面积与三棱锥ABCD−的体积之比为()A.3π4B.3π2C.2πD.9π6.已知πsin4sin0,,21cos4cos2=+−,则tan2=()A155B.53C.151

5D.557.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值(1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.

已知在平面直角坐标系xOy中,(4,1),(4,4)AB−−,若点P是满足12=的阿氏圆上的任意一点,点Q为抛物线2:16Cyx=上的动点,Q在直线4x=−上的射影为R,则||2||2||PBPQQR++的最小

值为()A.45B.85C.652D.2658.已知函数24e,0()e,0xxxfxxx+=(e是自然对数的底数),若存在120,0xx,使得()()12fxfx=,则()12xfx的取值

范围是()A.24e,0−B.3(16e)e,016−−C.3(16e)e0,16−D.20,4e二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对

的得5分,部分选对的得2分,有选错的得0分.9.以下说法正确的是()A.命题000:[1,),e1xpxx++的否定是:[1,),e1xxx++B.若2(0,),1xaxx++,则实数(,2]a−.C.已知,a

bR,“ab”是||||aabb的充要条件D.“函数tanyx=图象关于()0,0x中心对称”是“0sin0x=”的必要不充分条件10.已知01,loglog0cccab,则下列结论正确的是()A.1abcc

B.ccabbaC.3333abba++D.loglogbaacbc11.如图1,在ABC中,90ACB=,23AC=,2CB=,DE是ABC的中位线,沿DE将ADEV进行翻折,连接AB,AC得到四棱锥ABCED−(如图2),点F为AB的中点,在翻折过程中下

列结论正确的是()A.当点A与点C重合时,三角形ADE翻折旋转所得的几何体的表面积为333π2++B.四棱锥ABCED−的体积的最大值为32C.若三角形ACE为正三角形,则点F到平面ACD的距离为32D.若异面直线AC与BD所成角的余弦值为34,则A、C两点间的距离为312.己知

椭圆:222:1(3)3xyaa+=的左、右焦点分别为12FF、,右顶点为A,点M为椭圆上一点,点I是12MFF△的内心,延长MI交线段12FF于N,抛物线215()8yacx=+(其中c为椭圆下的半焦距)与椭圆交于B,C两点,若四边形1ABFC是菱形,则下列结论正确的是()A.

35||2BC=B.椭圆离心率是32的的C.1214MFMF+的最小值为94D.||||INMI的值为12三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.51(21)xxx+−的展开式中含4x项的系数为______

______.14.已知的非零数列na前n项和为nS,若1212,3,22nnnaaaaS+===+,则10S的值为____________.15.已知双曲线2222:1(0,0)xyEabab−=的右焦点(3,0)F,点A是圆22(3)(4)8xy+

++=上一个动点,且线段AF的中点B在双曲线E的一条渐近线上,则双曲线E的离心率的取值范围是____________.16.若函数exy=与e(ln)ayxa=+的图像有两个不同的公共点,则a的取值范围为____________.四、解答题:本题共

6小题,共70分.解答应写出文字说明、证明过程或演算步聚.17.已知正项等比数列na的的前n项和为nS,且满足:()14132,3aSaa==+,(1)求数列na的通项;(2)已知数列nb满足(21)nnbna=−,求数列nb的前n项和nT.18.已知函数2()23

sincos2cosfxxxx=−.(1)求函数2log()yfx=的定义域和值域;(2)已知锐角ABC的三个内角分别为A,B,C,若02Af=,求bca+的最大值.19.2022年12月15至16日,中央经济工作会议在北京举行.关于房地产主要有三点新提法,其中“住房改善

”位列扩大消费三大抓手的第一位.某房地产开发公司旗下位于生态公园的楼盘贯彻中央经济工作会议精神,推出了为期10天的促进住房改善的惠民优惠售房活动,该楼盘售楼部统计了惠民优惠售房活动期间到访客户的情况,统计数据如下表:(注:活动开始的第i天记为ix,第i天到访的人

次记为iy,i1,2,3,=)ix(单位:天)1234567iy(单位:人次)12224268132202392(1)根据统计数据,通过建模分析得到适合函数模型为xycd=(c,d均为大于零的常数).请根据统计数据及下表中的数据,求活动到访人次y关于活动开展的天次x的回归方程,并预

测活动推出第8天售楼部来访的人次;参考数据:其中770.84111lg,1.84,58.55,106.97iiiiiiivyvvxv======;参考公式:对于一组数据()()()1122,,,,,,nnuvuvuv,其回归直线ˆˆˆvu=

+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆˆ,nniiiiiinniiiiuuvvuvnuvvuuuunu====−−−===−−−;(2)该楼盘营销策划部从有意向购房的客户中,随机通过电话进行回访,统计有效回访发现,客户

购房意向的决定因素主要有三类:A类是楼盘的品质与周边的生态环境,B类是楼盘的品质与房子的设计布局,C类是楼盘的品质与周边的生活与教育配套设施.统计结果如下表:类别A类B类C类频率040.20.4从被回访客户中再随机抽取3人聘为楼盘的代言人,视频率为概率,记随机变量X为被抽取的3人中A类和C类

的人数之和,求随机变量X的分布列和数学期望.20.如图,在四棱锥PABCD−中,底面ABCD是直角梯形,ABBC⊥,ADBC∥,2ADDCBC==,60ADC=,侧面PAD是等腰三角形,PAPD=.(1)求证:BCPC⊥;(2)若侧面PAD⊥底面ABCD

,侧棱PB与底面ABCD所成角的正切值为32,M为侧棱PC上的动点,且([0,1])PMPC=.是否存在实数,使得平面PAD与平面MAD的夹角的余弦值为55?若存在,求出实数若不存在,请说明理由..的21.已知椭圆2222:1(0)xyEabab+=的左、右焦点分别为12FF,,上顶

点为1B,若△112FBF为等边三角形,且点31,2P在椭圆E上.(1)求椭圆E的方程;(2)设椭圆E的左、右顶点分别为12AA,,不过坐标原点的直线l与椭圆E相交于A、B两点(异于椭圆E的顶点),直线12AABA、与y轴的交点分别为M、N,若||3||ONOM=,证

明:直线过定点,并求该定点的坐标.22.已知函数()()eR,0axfxaxaa=−.(1)讨论函数()fx的单调性;(2)证明:当0x时,2cos102xx+−;(3)若0x,()sincos2fxxxax

−+−,求实数a的取值范围.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?