2021-2022学年高中数学人教版必修3教案:3.1.2概率的意义 3 含解析【高考】

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 7 页
  • 大小 153.500 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高中数学人教版必修3教案:3.1.2概率的意义 3 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高中数学人教版必修3教案:3.1.2概率的意义 3 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高中数学人教版必修3教案:3.1.2概率的意义 3 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有1人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高中数学人教版必修3教案:3.1.2概率的意义 3 含解析【高考】.doc,共(7)页,153.500 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-d7cefab627d296f3e53b2c266c8024e9.html

以下为本文档部分文字说明:

-1-3.1随机事件的概率(二)课题:3.1.2概率的意义教学目标:1.正确理解概率的意义;利用概率知识正确理解现实生活中的实际问题.2.通过对现实生活中的“掷币”、“游戏的公平性”、“彩票中奖”等问题的探究,感知应

用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3.通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.教学重点:理解概率的意义.教学难点:用概率的知识解释现实生活中的具体问题.教学方法:

讲授法课时安排1课时教学过程:一、导入新课:生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了.”这是真的吗?为此我们必须学习概率的意义.二、新

课讲解:1、提出问题:(1)有人说,既然抛掷一枚硬币出现正面向上的概率为0.5,那么连续抛掷一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?(2)如果某种彩票中奖的概率为10001,那么买1000张彩票一定能中奖吗?(3)在乒乓球比赛中,裁

判员有时也用数名运动员伸出手指数的和的单数与双数来决定谁先发球,其具体规则是:让两名运动员背对背站立,规定一名运动员得单数胜,另一名运动员得双数胜,然后裁判员让两名运动员同时伸出一只手的手指,两个人的手指数的和为单

数,则指定单数的运动员得到先发球权,若两个人的手指数的和为双数,则指定双数胜的运动员得到先发球权,你-2-认为这个规则公平吗?(4)“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了.”学了概率后,你能给出解释吗?(5)阅读课

本的内容了解孟德尔与遗传学.(6)如果连续10次掷一枚骰子,结果都是出现1点.你认为这枚骰子的质地均匀吗?为什么?2、讨论结果:(1)这种想法显然是错误的,通过具体的试验可以发现有三种可能的结果:“两次正面朝上”“两次反面朝上”“一次正面朝上,一次反面朝上”,而且其概率分别为0.25,

0.25,0.5.(2)不一定能中奖,因为买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖.(3)规则是公平的.(4)天气预报的“降水”是一个随机事件,因此,

“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的.(5)奥地利遗传学家(G.Mendel,1822—1884)用豌豆进行杂交试验,下表为试验结果(其中F1为第一子代,F2为第二子代):性状F1的表现F2的表现种子

的形状全部圆粒圆粒5474皱粒1850圆粒∶皱粒≈2.96∶1茎的高度全部高茎高茎787矮茎277高茎∶矮茎≈2.84∶1子叶的颜色全部黄色黄色6022绿色2001黄色∶绿色≈3.01∶1豆荚的形状全部饱满饱满882不饱满299饱满∶不饱满≈2.95∶1孟德尔发现

第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究,他发现了生物遗传的基本规律.实际上,孟德尔是从某种性状发生的频率作出估计的.(6

)利用刚学过的概率知识我们可以进行推断,如果它是均匀的,通过试验和观察,可以发现出现各个面的可能性都应该是61,从而连续10次出现1点的概率为(61)10≈0.0000000016538,这在一次试验(即连续10次投掷一枚骰子)中是几乎不可能发生的.而当

骰子不均匀时,特别是当6点的那面比较重时(例如灌了铅或水银),会使出现1点的概率最大,更有可能连续10次出现1点.现在我们面临两种可能的决策:一种是这枚骰子的质地均匀,另一种是这枚骰子的质地不-3-均匀.当连续1

0次投掷这枚骰子,结果都是出现1点,这时我们更愿意接受第二种情况:这枚骰子靠近6点的那面比较重.原因是在第二种假设下,更有可能出现10个1点.如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,

例如对上述思考题所作的推断.这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大.这种判断问题的方法称为似然法.似然法

是统计中重要的统计思想方法之一.三、例题讲解:例1为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合

,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.分析:学生先思考,然后交流讨论,教师指导,这实际上是概率问题,即2000尾鱼在水库中占所有鱼的百分比,特别是500尾中带记号的有40尾,就说明捕出一定数量的鱼中带

记号的概率为50040,问题可解.解:设水库中鱼的尾数为n,A={带有记号的鱼},则有P(A)=n2000.①因P(A)≈50040,②由①②得500402000=n,解得n≈25000.所以估计水库中约有

鱼25000尾.四、课堂练习:教材第118页练习:1、2、3、五、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并

用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索.通过以上例题与练习可以感到,数学特别是概率正越来越多地应用到我们的生活当中.它们已经不是数学家手中的抽象理论,而成为-4-我们认识世界的工具.从

彩票中奖,到证券分析;从基因工程,到法律诉讼;从市场调查,到经济宏观调控;概率无处不在.六、课后作业:习题3.1A组2、3.板书设计:教学反思:备课资料1.概率论的产生,还有一段名声不好的故事.17世纪的一天,保罗与

著名的赌徒梅尔赌钱,他们事先每人拿出6枚金币,然后玩,约定谁先胜三局谁就得到12枚金币.比赛开始后,保罗胜了一局,梅尔胜了两局,这时一件意外的事中断了他们的赌博.于是,他们商量这12枚金币应该怎样合理地分配.保罗认为,根据胜利的局数,他自己应得总数的31,即4枚金币,梅尔应得总数的32,即8

枚金币.但精通赌博的梅尔认为他赢的可能性大,所以他应该得到全部的金币,于是他们请求数学家帕斯卡评判.帕斯卡得到答案后,又求教于数学家费尔马.他们的一致裁决是:保罗应分得3枚金币,梅尔应分得9枚金币.试问:1.你知道数学家

帕斯卡和费尔马当时各自是怎样考虑和解决的吗?2.你对数学家帕斯卡和费尔马了解多少?思路:帕斯卡是这样解决的:如果再玩一局,或是梅尔胜,或是保罗胜.如梅尔胜,那么他可以得到全部的金币(记为1),如果保罗胜,那么两人各

胜两局,应各得金币的一半(记为21).由于这一局中3.1.2概率的意义1、提出问题:2、讨论结果:-5-两人获胜的可能性相等,因此梅尔得金币的可能性应是两种可能性大小的一半,记梅尔为(1+21)÷2=43,保罗为(0+21)÷2=41.所以他们各得9枚和

3枚金币.帕斯卡1623—1662法国费尔马1601—1665法国费尔马是这样考虑的:如果再玩两局,会出现四种可能的结果:(梅尔胜,保罗胜);(保罗胜,梅尔胜);(梅尔胜,梅尔胜);(保罗胜,保罗胜).其中前三种结果都是梅尔取胜,只有第四种结果才能使保罗

胜,所以梅尔取胜的概率为43,保罗取胜的概率为41.因此梅尔应得9枚金币,而保罗应得3枚金币.这和帕斯卡的答案一致.帕斯卡和费尔马还研究有关这类随机事件的更一般的规律,由此开始了概率论的早期研究工作.2.在密码的编制和破译中,概率论起着重要的作用.要使敌人

不能破译电文而又能使盟友容易译出电文,一直是外交官和将军们关心的问题.为了保密,通讯双方事先有一个秘密约定,称为密钥.发送信息方要把发出的真实信息——明文,按密钥规定,变成密文.接收方将密文按密钥还原成明文.例如,古罗马伟大

的军事和政治家凯撒大帝把明文中的每个字母按拉丁字母次序后移三位之后的字母来代替,形成密文.接收方收到密文后,将每个字母前移三位后便得到明文.这是一种原始的编制密码方法,很容易破译.在书面语言中单个的字母不是以同样的频率出现的.从例1中英文字母出现频率

的统计表中我们可以看出,在英文常用文章中,平均说来出现字母“E”的频率约为10.5%,“T”约为7.1%,而“J”的出现远小于1%.例如像凯撒大帝用过的简单密码,用FRGHV来代替CODES,容易通过对电文中字母的频率分析来破译.出现频率最高的字母大概表

示“E”,出现频率次高的字母大概是“T”,等等.现代保密系统采用了能确保每个字母出现在密文中的概率都相等的技术.一种理论上不可破译的密码是“一次性密码本”(用后立即销毁).这种密码本是一长串的随机数,每个都在1和26之间.这样一种密

码本可能从以下数开始:19,7,12,1,3,8,….如“ELEVEN”这个词,用按字母表顺序排在E后面第19个字母表示E,而用L后面第7个字母表示L,等等.因此,ELEVEN变成了XSQWHV.注意,尽管在明文中“E”出现3次,但是在

密文XSQWHV中却是用三个不同的字母-6-来替换的.3.概率天气预报是用概率值表示预报量出现可能性的大小,它所提供的不是某种天气现象的“有”或“无”、某种气象要素值的“大”或“小”,而是天气现象出现的可能性有多大.如对降水的预报,传统的天

气预报一般预报有雨或无雨,而概率预报则给出可能出现降水的百分数,百分数越大,出现降水的可能性越大.概率天气预报既反映了天气变化确定性的一面,又反映了天气变化的不确定性和不确定程度.在许多情况下,这种预报形式更能适

应经济活动和军事活动中决策的需要.请问同学们对概率天气预报如概率降水预报了解多少?答案:概率,通俗地讲就是某件事发生的可能性,用0—1之间的一个小数表示,概率愈大,某事件发生的可能性也就愈大.降水概率预报,顾名思义就是一种未来出现降水可能性大小的

预报.为方便用户使用,降水概率一般用百分数表示,与常规降水预报不同的是,它预报的不是降水的有、无,而是出现降雨的概率.在实际应用时,一般以50%作为“参考点”,当降水概率低于50%时,概率愈小,降水的可能性也就愈小;当降水概率高于50%时,概率愈大,降水的可能性也就愈大;如果降水概率正好是50%左

右时,有雨和无雨的可能性大致相当,这时就没有使用意义了.不过,在我们的概率预报中,是不会出现这种情况的,这是因为当降水概率出现在50%附近时,我们会运用多种手段,作出更进一步分析,将有应用价值的结论提供给人们使用.4.背景材料:记者梁红英报道本报讯2004年2月3日晚6点19

分,一彩民购买的“江浙沪大乐透”彩票,同时中出10注一等奖,独揽48571620元巨额奖金,创下了中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每

组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”2004015期开奖号码完全一致.记者江世亮报道本报讯……对于这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此记者于昨日午夜电话联线采访了本市一

位数学建模专家……博士说,以他现在不完全掌握的情况来-7-分析,像这位幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗讲就是接近于零.……国外的中奖者完全是基于运气,很多人往往是因为找不出零钱,而

在加油站等处随手买一张而中的奖.上面是文汇报2004年2月5日登载的两条消息,对其中提到的“一次万亿分之一的事件”,我们该作何理解呢?

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 326073
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?