贵州省贵阳市第一中学 2022 届高三上学期高考适应性月考卷(一)文科数学答案

PDF
  • 阅读 4 次
  • 下载 0 次
  • 页数 9 页
  • 大小 236.289 KB
  • 2024-09-25 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
贵州省贵阳市第一中学 2022 届高三上学期高考适应性月考卷(一)文科数学答案
可在后台配置第一页与第二页中间广告代码
贵州省贵阳市第一中学 2022 届高三上学期高考适应性月考卷(一)文科数学答案
可在后台配置第二页与第三页中间广告代码
贵州省贵阳市第一中学 2022 届高三上学期高考适应性月考卷(一)文科数学答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的6 已有4人购买 付费阅读2.40 元
/ 9
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】贵州省贵阳市第一中学 2022 届高三上学期高考适应性月考卷(一)文科数学答案.pdf,共(9)页,236.289 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-d5e93559d9588e5b6d2198b4b6eb77e4.html

以下为本文档部分文字说明:

文科数学参考答案·第1页(共9页)贵阳第一中学2022届高考适应性月考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案CADABDBABCDC【解析】1.集合2{|230}[13]Axxx≤,,{2345}B,,,,所以

{23}AB,,故选C.2.因为(1i)3iz,所以3i12i1iz,故选A.3.因为(12)a,,(13)b,,所以(23)manbmnmn,,又因为()manbb⊥,所以()()3(22)0manbbmnmn,

化简得2mn,故选D.4.因为231722nSnn,所以4432aSS,故选A.5.因为2()ln(231)fxxx,所以定义域为1(1)2,,,所以由复合函数的单调性知()fx的单调递减区间12

,,故选B.6.当1i时,2S;当2i时,3S;当3i时,12S;当4i时,13S;当5i时,2S;所以该程序框图计算结果以4为周期,即2021i输出的S与1i时的S相等,即输出的2S

,故选D.7.由表得14x,27.6y,所以27.68.414a,解得141a,故选B.8.因为38a,61a,所以3d,114a,所以317nan,所以1()(331)22nnnaannS,所以当5

n时,nS取得最小值40,故选A.9.圆C的圆心坐标为(32),,半径为22;因为直线30mxny截圆所得弦长为42,文科数学参考答案·第2页(共9页)所以直线30mxny过圆心,即323mn,所以211

21(32)3mnmnmn134843833mnnm≥,经检验,等号可成立,故选B.10.0123(8)3744484878382020,故选

C.11.如图1,由题意3PMa,21120PFF∠,所以22PFa,14PFa,又因为122FFc,所以由余弦定理得222(4)(2)(2)22aacac,又因为离心率cea,联立化简得230ee

,所以1312e,故选D.12.当0x时,1()lnefxxx,()ln1fxx,所以函数()fx在10e,上单调递减,在1e,上单调递增,结合()fx是定义在R上的奇函数,函数()fx的图象如图2,函数()Fx的零点

即方程()[()]0fxfxa的根,又因为()0fx有3个根,所以()fxa有2个根,即满足条件10ea或10ea,解得1100eea,,,故选C.二、填空题(本大题共4小题,每小题5分,共20分)题号13141

516答案131734π211n【解析】13.因为tan1,tan2,所以tan()tantan11tantan3.14.如图3,不等式组1122xyxyxy

≥,≤,≥表示的可行域为封闭△ABC;所以当4x,3y时,目标函数23zxy取得最大值max243317z.图1图2图3文科数学参考答案·第3页(共9页)15.该几何体是图4甲的长方体截掉三棱锥1AB

DA后得到的几何体图乙,所以该几何体的外接球与长方体的外接球重合,外接球半径2223343422R,所以外接球的表面积24π34πSR.16.因为1222nnaannnn,所以21234212()()()nnnSaaaaaa

…(31)(53)(75)(2121)211nnn….三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(1)∵(2)coscosbcA

aC,∴由射影定理得:2coscoscosbAcAaCb,…………………………………………………(3分)∴1cos2A,…………………………………………………………(4分)∴π3A.…………………………………………………(5分)(2

)由余弦定理2222cosabcbcA,得22222()()34bcabcbcbcbc≥.……………………………………………………(8分)又∵2bc,∴21a≥,即1a≥,当且仅当1bc时取等号,…………………………………………(10分)又2abc,

…………………………………………………(11分)所以△ABC的周长34ABCC△≤,即△ABC的周长的取值范围为[34),.……………………………………(12分)图4甲乙文科数学参考答案·第4页(共9页)18.(本小题满分12

分)解:(1)由表中数据,男生样本数为100人,其中喜欢打乒乓球的有52人,所以该校男生喜欢打乒乓球的概率的估计值为520.52100.………………………………………………(2分)同理,该校女生喜欢打乒乓球的概率的估

计值为340.34100,…………………………………………………(3分)又∵该校共有1800人,男女比例为5∶4,∴该校共有女生418008009人,……………………………………………(5分)∴该校女生喜欢打乒乓球的人数为8000.34272人.……………………………

…………………………(6分)(2)根据表中数据:52a,34b,48c,66d,可计算2K的观测值22()200(52663448)()()()()86114100100nadbckabcdacbd

,…………………………………………………(8分)化简计算可得:54006.610817k,…………………………………………(10分)又∵6.6106.635,∴不能在犯错误的概率不超过0.01

的前提下认为“中学生喜欢打乒乓球与性别有关”.…………………………………………………(12分)19.(本小题满分12分)(1)证明:∵底面ABCD是边长为2的正方形,∴ABAD⊥,又∵平面PAD⊥底面ABCD,且平面PAD底面ABCDAD,AB底

面ABCD,∴AB⊥平面PAD,∴ABPD⊥,ABAP⊥,……………………………………………(2分)∴△ABP是直角三角形,又∵6PB,2AB,∴2AP,……………………………………(3分)文科数学参考答案·第5页(共9页)同理,2PD,

∴在△PAD中,222PAPDAD,即PAPD⊥,…………………………………………………(4分)又∵ABPAA,∴PD⊥平面PAB,……………………………………………(5分)又∵PD平面PC

D,∴平面PAB⊥平面PCD.……………………………………………(6分)(2)解:法一:如图5,过D作BM的垂线交BM于点N,则BMDN⊥,由(1)PAPD得PMAD⊥,又∵平面PAD⊥底面ABCD,且平面PAD底面ABCDAD,PM平面PAD,∴PM⊥平面ABCD,…………………

………………………………(7分)∴PMDN⊥,又∵BMPMM,∴DN⊥平面PBM,即||DN就是点D到平面PBM的距离,…………………………………………………(9分)在△DBM中,11||||||||22DBMSDMABBMDN△,…………………………………………………(1

0分)又∵||1DM,||2AB,||5BM,∴25||5DN.…………………………………………………(12分)法二:如图6,DPBMPBDMVV三棱锥三棱锥,…………………………………(

7分)又∵由(1)可得1||3BDMPBDMVSPM△三棱锥111121323.……………………………(9分)图5图6文科数学参考答案·第6页(共9页)设点D到平面PBM的距离为d,则115||||51222PBMSBMPM

△,…………………………(10分)1536PBMDPBMVSdd△三棱锥,∴5163d,解得255d,∴点D到平面PBM的距离为255.…………………………………………(12分)20.(本小题满分12分)解:(1)∵211()lnfxa

xxx,∴2323212()(0)aaxxfxxxxxx.…………………………………(2分)1当0a≤时,()0fx恒成立,函数()fx在(0),上单调递减;…………………………………………………(3分)2当0a

时,令()0(0)fxx,解得1182axa,……………………………………………………(4分)当x变化时,()fx和()fx的变化如下表:x11802aa,1182aa1182aa

,()fx−0+()fx单调递减极小值单调递增∴函数()fx在区间11802aa,上单调递减,在区间1182aa,上单调递增.综上,当0a≤时,函数()fx在(0),上单调递减;当0a时,函数()fx在区间11802aa

,上单调递减,在区间1182aa,上单调递增.…………………………………………………(6分)文科数学参考答案·第7页(共9页)(2)由题意211()()lngxfxaxxx,∴2211()(0)aaxgxx

xxx.……………………………………………(8分)当0a≤时,函数()gx在(0),上单调递减,无最小值;…………………………………………………(9分)当0a时,函数()gx在10a,上单调递减,在1a,上单调

递增,…………………………………………………(10分)∴min11()ln(1ln)0gxgaaaaaa,解得ea,∴实数a的值为e.…………………………………………………(12分)21.(本小题满分12分)(1)解:

∵过椭圆的右焦点(0)Fc,有且仅有一条直线与圆2C:222xy相切,∴(0)Fc,在圆2C:222xy的图象上,即22c.………………………………………………………(2分)又∵椭圆1C的离心率6233cea,∴3a,即23a,∴2221bac,……………………………

…………………(4分)∴椭圆1C的标准方程为2213xy.………………………………………(5分)(2)证明:∵2C:222xy,曲线2C与y轴的正半轴交于点P,∴点P的坐标为(02),,……………………………………………(6分)设直线l的方程为(0)ykxmk,A,B两点

的坐标分别为11()xy,,22()xy,,∵BPOAPO∠∠,∴0APBPkk,…………………………………………………(7分)又∵112APykx,222BPykx,文科数学参考答案·第8页(共9页)代入化简得:2112(2)(2)0xyxy

,……………………………(8分)又∵11ykxm,22ykxm,代入化简得12122(2)()0kxxmxx(①式),…………………………(9分)联立直线l和椭圆1C的方程:22222(31)

633033ykxmkxkmxmxy,,………………………………………………(10分)∴122631kmxxk,21223331mxxk,代入①式化简得:22(33)6(2)0kmkmm,解得22

m,…………………………………………………(11分)∴直线l的方程为22ykx,即直线l恒过定点202,.…………………………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(

1)∵1C:2cossinxy,,(为参数),∴1C:2214xy,……………………………………………(2分)又∵2C:cossin30,将cosx,siny,代入得:∴2C:30xy,……………………

……………………………(4分)∴曲线1C的普通方程为214xy,曲线2C的直角坐标方程为30xy.…………………………………………………(5分)(2)∵曲线2C的直角坐标方程为30xy,∴曲线2C的参数方程为23222xtyt

,,(t为参数),文科数学参考答案·第9页(共9页)定点为(30)M,,…………………………………………………(6分)联立曲线2C的参数方程和曲线1C的普通方程,得:252620tt,∴12265tt,1225tt,………………………………

…………(8分)∴2121212221212()4||11114||||||||ttttttMAMBtttttt,∴11||||MAMB的值为4.……………………………………………(10分)2

3.(本小题满分10分)【选修4−5:不等式选讲】解:(1)当1a时,23312()|32||31|6133133xfxxxxxx,≥,,,≤,,…………………………………………………(2分)∴不等式()1fx≤等价于23

31x≥,≤或1233611xx,≤或1331x≤,≤,…………(4分)解得0x≥,∴不等式()1fx≤的解集为[0),.………………………………………(5分

)(2)∵()|32||3||2|fxxxaa≤,∴2()28fxaa≤等价于2|2|28aaa≤恒成立,∴|2|(2)(4)aaa≤.…………………………………………………(6分)1当20a

,即2a时,00≤恒成立;………………………………(7分)2当20a,即2a时,|2|(2)(4)aaa≤转换为41a≥,解得5a≥;……………………………………………(8分)3当20a,即2a时,|2|(2)(4)

aaa≤转换为41a≤,解得2a,…………………………………………(9分)综上,实数a的取值范围为(2][5),,.…………………………(10分)

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?