山东省枣庄市薛城区2020-2021学年高一下学期期中考试数学试题 含答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 10 页
  • 大小 988.000 KB
  • 2024-10-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
山东省枣庄市薛城区2020-2021学年高一下学期期中考试数学试题 含答案
可在后台配置第一页与第二页中间广告代码
山东省枣庄市薛城区2020-2021学年高一下学期期中考试数学试题 含答案
可在后台配置第二页与第三页中间广告代码
山东省枣庄市薛城区2020-2021学年高一下学期期中考试数学试题 含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的7 已有1人购买 付费阅读2.40 元
/ 10
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】山东省枣庄市薛城区2020-2021学年高一下学期期中考试数学试题 含答案.doc,共(10)页,988.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-c541d0261d11cd4b4aada8df57f3fa90.html

以下为本文档部分文字说明:

秘密★启用前试卷类型:A枣庄市薛城区2020-2021学年下学期期中检测高一数学2021.04本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分为150分,考试时间120分钟.第I卷(选择题共60分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷规定的位置上.2

.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须将答案写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案.写在本试卷上无效.一、单项选择题:

本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2i12iz+=−.则在复平面内,z对应的点的坐标是A.()1,0B.()0,1C.54(,)33−−D.4

5(,)33−−2.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是A.25πB.50πC.125πD.都不对3.向量,,abc在正方形网格中的位置如图所示.若向量+ab与c垂直,则实数=A.2−B.3−C.3D.24.设D

是ABC所以平面内一点,3BCCD=,则AD=A.4133ABAC+B.4133ABAC−C.1433ABAC−D.1433ABAC−+5.如果一个水平放置的图形的斜二测直观图是一个底面为45,腰和上底均为1的等腰梯形,那么原平面图形

的面积是A.22+B.122+C.222+D.12+6.已知圆柱的高为2,它的两个底面的圆周在同一个半径为2的球的球面上.则球的体积与圆柱的体积的比值为A.43B.916C.34D.1697.《数书九章》是中国南宋时期杰出数学家秦

九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求职”中提出了已知三角形三边,,abc求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减

上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即222222142cabSca+−=−,现在有周长为1027+的VABC满足sin:sin:sin2:3:7ABC=

,则用以上给出的公式求得VABC的面积为A.63B.47C.87D.128.如图,AD是某防汛抗洪大坝的坡面,大坝上有一高为20米的监测塔BD,若某科研小组在坝底A点测得15BAD=o,沿着坡面前进40米到达E点,测得45BED=,则大坝的坡角(DAC)的余弦值为A.31−B.312−C

.21−D.212−二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体可能是A.圆锥B.圆柱C.棱锥D.正方体10.已知复数z的共轭复

数为z,且i1iz=+,则下列结论正确的是A.15z+=B.z虚部为i−C.202010102z=D.2zzz+=11.在ABC中,D,E,F分别是边BC,AC,AB的中点,下列说法正确的是A.ABACAD+−=0B.DAEBFC++=0C.若3||||||ABACADA

BACAD+=,则BD是BA在BC的投影向量D.若点P是线段AD上的动点,且满足BPBABC=+,则的最大值为1812.对于ABC,有如下命题,其中正确的有A.若sin2sin2AB=,则ABC

是等腰三角形B.若ABC是锐角三角形,则不等式sincosAB恒成立C.若222sinsincos1ABC++,则ABC为锐角三角形D.若2||ACABAB,则ABC为钝角三角形第II卷(非选择题共90分)三.填

空题:本题共4小题,每小题5分,共20分.13.已知向量(1,1)=−a,(3,1)=b,则b在a方向上的投影向量的模为________.14.△ABC的内角为A,B,C所对应的边分别为a,b,c,已知a=2,c=23,A=30°,则边长b=.15.如图,在四边形ABC

D中,AB=3DC,E为边BC的中点,若AE=AB+AD,则λ+μ=_________.16.如图是一座山的示意图,山呈圆锥形,圆锥的底面半径为10公里,母线长为40公里,B是母线SA上一点,且10AB=公里.为了发展旅游业,要建设一条最短的从A绕山一周到B的

观光铁路.这条铁路从A出发后首先上坡,随后下坡,则下坡段铁路的长度为公里.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题共10分)已知复平面内的点A,B对应的复数分别为1izmm=−,()222212izmm=−+−(mR),设AB对

应的复数为z.(1)当实数m取何值时,复数z是纯虚数;(2)若复数z在复平面上对应的点位于第四象限,求实数m的取值范围.18.(本小题共12分)已知向量(1,2)=a,(1,3)=−b,(3,2)=−c.(1)求向量a

与2+ab所成角的余弦值;DCEAB(2)若(2)+ab//()k+bc,求实数k的值.19.(本小题共12分)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的

中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.说明过程,不要求严格证明,不考虑打印损耗的情况下,(1)计算制作该模型所需原料的质量;(2)计算该模型的表面积(精确到0.1)参考数据:133.61,153.87,174.12

20.(本小题共12分)在ABC中,若a、b、c分别是内角A、B、C的对边,已知ABC同时满足下列4个条件中的3个:①1sin22B=;②2220abcab+−+=;③23b=;④3c=.(1)请指出这3个条件,并说明理由;

(2)求sinA.21.(本小题共12分)边长为1的正三角形ABC,E、F分别是边AB、AC上的点,若AEmAB=,AFnAC=,其中,(0,1)mn,设EF的中点为M,BC中点为N.(1)若A、M、N三点

共线,求证:mn=;(2)若1mn+=,求||MN的最小值.22.(本小题共12分)在ABC中,内角ABC,,的对边分别为abc,,,已知coscos1sinsinsinACACB+=.(1)求角B

的取值范围;(2)若7sin4B=,且32BABC=,求||BABC+的值.2020~2021学年度模块检测试题高一数学试题参考答案及评分标准2021.04一、单项选择题(本题共8小题,每小题5分,共40分)1~4BBDD5~

8ADAA二.多项选择题(本题共4小题,每小题5分,共20分)9.ACD10.AD11.BCD12.BD三、填空题(本题共4小题,每小题5分,共20分)13.214.2或415.7616.18四、解答题(本题共6小题,

共70分)17.解:点A,B对应的复数分别为()2212i,212izmmzmm=−=−+−,AB对应的复数为z,222121(2)zzzmmmmi=−=−−++−.(1)复数z是纯虚数,2221020mmmm−−=+−,·······

········3分解得11221mmmm=−=−或且,12m=−.·················5分(2)复数z在复平面上对应的点坐标为22(21,2)mmmm−−+−,位于第四象限,2221020mmmm−−+−,·················7分即1122

1mmm−−或,122m−−.···································································10分18.解:(1)因为(1,2)=a,(1,3)=−b,所以2+ab(1,8)=−.2分设

向量a与2+ab所成角为,(2)15313cos|||2|13565+===+aabaab.··············································6分(2)∵2+ab(1,8)=−,()k+bc(31,32)kk=

−−,········································8分又(2)+ab//()k+bc,∴(1)(32)8(31)0kk−−−−=,解得522k=.········································

·······12分19.解:(1)因为E,F,G,H,分别为所在矩形各棱的中点,所以四边形EFGH为菱形.由AB=BC=6cm,AA1=4cm,得13EFFGGHHE====又因为O为长方体的中心,所四

棱锥O﹣EFGH的高3h=.······································2分146423122EFGHS=−=,1123123OEFGHV−==.4分∴该模型体积为:1111664121

4412132ABCDABCDOEFGHVV−−−=−=−=cm3.······································································································

·································5分∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8g.··············

·····························6分(2)记面ABCD的中心为O,连接OO,OB,OE,则2OO=,32OBOH==,2213OEOOOE=+=.·······················8分由

题意,四棱锥O﹣EFGH的四个侧面为全等三角形.在等腰OEH中,取OH的中点M,连接EM,222321713()22EMOEOM=−=−=,所以11731732222OEHS==.······································

···························10分∴该模型表面积为:111131746626441242ABCDABCDEFGHOEHSSS−−+=+−+cm3156617180.7=+cm2.·······

···················································································12分20.解:(1)ABC同时满足条件①,③,④.··········

·······················································1分理由如下:若ABC同时满足①,②.因为1sin22B=,且(0,)22B,所以=26B

,即3B=·········································2分因为2221cos22abcCab+−==−,且(0,)C,所以23C=·····················

··········4分所以BC+=,矛盾·······················································································

···············5分所以ABC只能同时满足③,④.因为bc,所以BC,故ABC不满足②故ABC满足①,③,④·······································································

·························7分(2)在ABC中,23b=,3c=,3B=又由正弦定理知:sinsinbcBC=,所以sin3sin4cBCb==·····································9分又

因为BC,所以(0,)2C,7cos4C=·························································10分所以3713321sinsin()sin()324248ABCC+=+=+=+=····················1

2分21.解:(1)由,,AMN三点共线,得,AMAN共线,根据共线向量定理可得,存在R使得AMAN=,即11()()22AEAFABAC+=+,…………3分所以mABnACABAC+=+,根据平面向量基本定理可得mn==,所以mn=.………

………5分(2)因为MNANAM=−11()()22ABACAEAF=+−+11(1)(1)22mABnAC=−+−.································································

·······················7分又1mn+=,所以11(1)22MNmABmAC=−+.·······················································8分因为三角形ABC是边长为1的正三角形,所以

||||1ABAC==,1||||cos32ABACABAC==,····················9分所以2||MN=22222111(1)(1)442MNmABmACmmABAC=−++−22111(1)11(1)||||cos4423mmmmABAC=−++

−22111(1)(1)444mmmm=−++−2113()4216m=−+.···········································································

··································11分所以12m=时,MN取得最小值34.···················12分22.解:(1)因为coscoscossincossinsinsinsinsinACACCAACAC++=sin()sin1si

nsinsinsinsinACBACACB+===.···········································································2分所以2sinsinsinACB=由正

弦定理可得,2bac=.························································································4分因为2222cos22cosbacacBacacB=+−−,

所以1cos2B,即03B.··············································································6分(2)因为7sin4B=,且2bac=,所以B不

是最大角,所以273cos1sin1164BB=−=−=.所以33cos24BABCacBac===,得2ac=.因而22b=.····························8分由余弦定理得2222cosbacacB=+−,所

以225ac+=.·······························10分所以22222||22cos8BCBAacBCBAacacB+=++=+−=,即||22BCBA+=.······················································

········································12分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?