2024年新高考数学一轮复习题型归纳与达标检测 第59讲 离散型随机变量及其分布列(讲) Word版含解析

DOC
  • 阅读 0 次
  • 下载 0 次
  • 页数 8 页
  • 大小 87.530 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2024年新高考数学一轮复习题型归纳与达标检测 第59讲 离散型随机变量及其分布列(讲) Word版含解析
可在后台配置第一页与第二页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第59讲 离散型随机变量及其分布列(讲) Word版含解析
可在后台配置第二页与第三页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第59讲 离散型随机变量及其分布列(讲) Word版含解析
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有0人购买 付费阅读2.40 元
/ 8
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第59讲 离散型随机变量及其分布列(讲) Word版含解析.docx,共(8)页,87.530 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-c384277f5f8e3937de2ca0dd684e6ec2.html

以下为本文档部分文字说明:

第59讲离散型随机变量及其分布列思维导图知识梳理1.离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量.(2)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概

率P(X=xi)=pi,则称表Xx1x2…xi…xnPp1p2…pi…pn为离散型随机变量X的概率分布列,简称为X的分布列,具有如下性质:①pi≥0,i=1,2,…,n;②p1+p2+…+pi+…+pn=1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.两点分

布如果随机变量X的分布列为X01P1-pp其中0<p<1,则称离散型随机变量X服从两点分布.其中p=P(X=1)称为成功概率.3.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X

=k)=CkMCn-kN-MCnN(k=0,1,2,…,m).X01…mPC0MCn-0N-MCnNC1MCn-1N-MCnN…CmMCn-mN-MCnN其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果一个随机变量X的分布列具有

上表的形式,则称随机变量X服从超几何分布.题型归纳题型1离散型随机变量分布列的性质【例1-1】设X是一个离散型随机变量,其分布列为X-101P132-3qq2则q的值为()A.1B.32±336C.32-336D.32+336【解析】选C由分布列的性质知2-3q≥0,q2≥0,

13+2-3q+q2=1,解得q=32-336.【例1-2】已知随机变量X的分布规律为P(X=i)=i2a(i=1,2,3),则P(X=2)=________.【解析】由分布列的性质知12a+22a+32a=1,∴a=3,∴P(X=2)=22a=13.【答案】13【跟踪训练

1-1】离散型随机变量X的概率分布规律为P(X=n)=an(n+1)(n=1,2,3,4),其中a是常数,则P12<X<52的值为________.【解析】由11×2+12×3+13×4+14×5×a=1,知4

5a=1,得a=54.故P12<X<52=P(X=1)+P(X=2)=12×54+16×54=56.【答案】56【跟踪训练1-2】设离散型随机变量X的分布列为X01234P0.20.10.10.3m(1)求随机变量Y=2X+1的分布列;(2)求随机变量η=|X-1|的分布列

;(3)求随机变量ξ=X2的分布列.解:(1)由分布列的性质知,0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为X012342X+113579从而Y=2X+1的分布列为Y13579P0.20.10.10.30.3(2)列表为X01234|X-1|10123∴P(η=0)

=P(X=1)=0.1,P(η=1)=P(X=0)+P(X=2)=0.2+0.1=0.3,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的分布列为η0123P0.10.30.30.3(3)首先列表为X01234

X2014916从而ξ=X2的分布列为ξ014916P0.20.10.10.30.3【名师指导】离散型随机变量的分布列的性质的应用(1)利用“总概率之和为1”可以求相关参数的取值范围或值;(2)利用“离散型随机变量在一范围内

的概率等于它取这个范围内各个值的概率之和”求某些特定事件的概率;(3)可以根据性质判断所得分布列结果是否正确.题型2超几何分布【例2-1】某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2

人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列.[解](1)由已知,有P(A)=C13C14+C23C210=13.

所以事件A发生的概率为13.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以随机变量X的分布

列为X012P415715415【跟踪训练2-1】某大学生志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选

出的3名同学是来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的分布列.【解】(1)设“选出的3名同学是来自互不相同的学院”为事件A,则P(A)=C13C27+C03C37C310=4960.所以选出的3名同

学是来自互不相同学院的概率为4960.(2)随机变量X的所有可能值为0,1,2,3.P(X=k)=Ck4·C3-k6C310(k=0,1,2,3).所以随机变量X的分布列是X0123P1612310130【跟踪训练2-2】在心理学研究中,常采用对比试验的方法评价

不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,

B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列.【解】(1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)=C48C510=518

.(2)由题意知X可取的值为0,1,2,3,4,则P(X=0)=C56C510=142,P(X=1)=C46C14C510=521,P(X=2)=C36C24C510=1021,P(X=3)=C26C34C510=521,P(X=4)=C16C4

4C510=142.因此X的分布列为X01234P1425211021521142【名师指导】1.随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然.2.求超几何分布的分布列的

步骤第一步,验证随机变量服从超几何分布,并确定参数N,M,n的值;第二步,根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率;第三步,用表格的形式列出分布列.题型3求离散型随机变量的分布列【例3-1】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检

测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要

的检测费用(单位:元),求X的分布列.[解](1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)=A12A13A25=310.(2)X的可能取值为200,300,400,则P(X=200)=A22A25=1

10,P(X=300)=A33+C12C13A22A35=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=35.故X的分布列为X200300400P11031035【跟踪训练3-1】有编号为1,2

,3,…,n的n个学生,入座编号为1,2,3,…,n的n个座位,每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为X,已知X=2时,共有6种坐法.(1)求n的值;(2)求随机变量X的分布列.【

解】(1)因为当X=2时,有C2n种坐法,所以C2n=6,即n(n-1)2=6,n2-n-12=0,解得n=4或n=-3(舍去),所以n=4.(2)因为学生所坐的座位号与该生的编号不同的学生人数为X,由题意知X的可能取值是0,2,3,4,所以P(X=0)=1A44=124,P(X=2)=C24×1

A44=624=14,P(X=3)=C34×2A44=824=13,P(X=4)=9A44=38,所以随机变量X的分布列为X0234P124141338【跟踪训练3-2】甲、乙两人为了响应政府“节能减排”的号召,决定各购置一辆纯电动汽车.经了解目前市场上销售的主流纯电动汽车,按行驶里程数R

(单位:公里)可分为三类车型:A:80≤R<150,B:150≤R<250,C:R≥250.甲从A,B,C三类车型中挑选,乙从B,C两类车型中挑选,甲、乙二人选择各类车型的概率如表:车型概率人ABC甲15pq乙1434若甲、乙都选C类车型的概率为310.(1)求p,q的值;(2)求甲、乙选择不同车

型的概率;(3)某市对购买纯电动汽车进行补贴,补贴标准如表:车型ABC补贴金额/(万元/辆)345记甲、乙两人购车所获得的财政补贴和为X,求X的分布列.解:(1)由题意可知34q=310,p+q+15=1,解得p=25,q=25.(2)设“甲、

乙选择不同车型”为事件A,则P(A)=15+25×14+25×34=35,所以甲、乙选择不同车型的概率是35.(3)X可能取值为7,8,9,10.P(X=7)=15×14=120,P(X=8)=15×34+25×14=14,P(X=9)=25×14+25×34=25,P(X=10)=25×

34=310.所以X的分布列为X78910P1201425310【名师指导】离散型随机变量分布列的求解步骤

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?