【文档说明】高中数学新教材人教A版必修第一册 1.1 集合的概念 教案 含答案【高考】.doc,共(4)页,80.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-b5e4f15bb241b2e64803e067e7e10ba6.html
以下为本文档部分文字说明:
-1-《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合
的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情
感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节
课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;-2-4.《水浒》中梁山108好汉;5.到线段两端距离相等的点.在这里,集合是我们常用
的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集
).思考:上述5个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30的非负实数③直角坐标平面的横坐标与纵坐标相等的点④的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2的整数⑧正三角形
全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A的元素,或者不是集合A的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因
此,同一集合中不应重复出现同一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.
答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.(4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto)A,记作a∈A(b)如果a
不是集合A的元素,就说a不属于(notbelongto)A,记作aA例如:A表示方程x2=1的解.2A,1∈A(5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列-3-举法和描述法来表示集合.(a)列举法:把集
合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列表法.如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;思考2,引入描述法答案:(1)1~9内所有偶数组成的集合(2)不能,因为集合中元
素的个数是无穷多个.说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.(b)描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征
.如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;思考3:描述法表示集合应注意集合的代表元素{(x,y)|y=x2+3x+2}与{y|y=x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z.(6)常用数集及其记法非
负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R辨析:这里的{}已包含“所有”的意思,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.如果写{实数}是正确的.说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意
,一般集合中元素较多或有无限个元素时,不宜采用列举法.(7)集合的分类问题2:我们看这样一个集合:{x|x2+x+1=0},它有什么特征?显然这个集合没有元素.我们把这样的集合叫做空集,记作.练习:(
1)0(填∈或)(2){0}(填=或≠)集合的分类:(1)按元素多少分类:有限集、无限集;-4-(2)按元素种类分类:数集、点集等(三)例题讲解例1.用集合表示:①x2-3=0的解集;②所有大于0小于10的奇数;③不等式2x-1>3的解.例2.已知集合S满足:1S,且当aS时
11Sa−,若2S,试判断12是否属于S,说明你的理由.例3.设由4的整数倍加2的所有实数构成的集合为A,由4的整数倍再加3的所有实数构成的集合为B,若,xAyB,试推断x+y和x-y与集合B的关系.(四)归纳小结本节课从实例入
手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法.