【文档说明】《高中数学新教材人教A版必修第一册教案》2.1 等式性质与不等式性质 含答案【高考】.doc,共(8)页,389.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-9e979f855da3500bb69959bc822e1f7a.html
以下为本文档部分文字说明:
-1-第2课时等式性质与不等式性质学习目标核心素养1.掌握不等式的性质.(重点)2.能利用不等式的性质进行数或式的大小比较或不等式的证明.(难点)3.通过类比等式与不等式的性质,探索两者之间的共性与差异.1.通过不等式性质的判断与证明,培养逻辑推理能力.2.借助不等式性质求范围问题
,提升数学运算素养.1.等式的性质(1)性质1如果a=b,那么b=a;(2)性质2如果a=b,b=c,那么a=c;(3)性质3如果a=b,那么a±c=b±c;(4)性质4如果a=b,那么ac=bc;(5)性质5如果a=b,c≠0,那么ac=bc.2
.不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒
ac>bd.(7)乘方法则:a>b>0⇒an>bn>0(n∈N,n≥2).1.若a>b,c>d,则下列不等关系中不一定成立的是()A.a-b>d-cB.a+d>b+c-2-C.a-c>b-cD.a-c<a-dB[根据不等式的性质.]2.与a
>b等价的不等式是()A.|a|>|b|B.a2>b2C.ab>1D.a3>b3D[可利用赋值法.令a=-5,b=0,则A、B正确而不满足a>b.再令a=-3,b=-1,则C正确而不满足a>b,故选D.]3.设x<a<0
,则下列不等式一定成立的是()A.x2<ax<a2B.x2>ax>a2C.x2<a2<axD.x2>a2>axB[∵x<a<0,∴x2>a2.∵x2-ax=x(x-a)>0,∴x2>ax.又ax-a2=a(x-a)>0,∴ax>a2.∴x2>ax>a2.
]利用不等式性质判断命题真假【例1】对于实数a,b,c下列命题中的真命题是()A.若a>b,则ac2>bc2B.若a>b>0,则1a>1bC.若a<b<0,则ba>abD.若a>b,1a>1b,则a>0,b<0[思路
点拨]本题可以利用不等式的性质直接判断命题的真假,也可以采用特殊值法判断.D[法一:∵c2≥0,∴c=0时,有ac2=bc2,故A为假命题;由a>b>0,有ab>0⇒aab>bab⇒1b>1a,故B为假命题;-3-a<b<0
⇒-a>-b>0⇒-1b>-1a>0a<b<0⇒-a>-b>0⇒ab>ba,故C为假命题;a>b⇒b-a<01a>1b⇒1a-1b>0⇒b-aab>0ab<0.∵a>b,∴a>0且b<0,故D为真命题.法二:特殊值排除法.取c=0,则a
c2=bc2,故A错.取a=2,b=1,则1a=12,1b=1.有1a<1b,故B错.取a=-2,b=-1,则ba=12,ab=2,有ba<ab,故C错.]运用不等式的性质判断时,要注意不等式成立的条件,不要弱化条件,尤其是不能凭想当然随意捏造性质.解有关不等式选择题时,也可采用特殊值法进行排除
,注意取值一定要遵循如下原则:一是满足题设条件;二是取值要简单,便于验证计算.1.下列命题正确的是()A.若a2>b2,则a>bB.若1a>1b,则a<bC.若ac>bc,则a>bD.若a<b,则a<bD[A错,例如(-3)2>22;B错,例如12>1-3;C错,例如当c=
-2,a=-3,b=2时,有ac>bc,但a<b.]利用不等式性质证明简单不等式-4-【例2】若a>b>0,c<d<0,e<0,求证:e(a-c)2>e(b-d)2.[思路点拨]可结合不等式的基本性质,分析所证不等式的结构,有理有据
地导出证明结果.[证明]∵c<d<0,∴-c>-d>0.又∵a>b>0,∴a-c>b-d>0.∴(a-c)2>(b-d)2>0.两边同乘以1(a-c)2(b-d)2,得1(a-c)2<1(b-d)2.又e<0
,∴e(a-c)2>e(b-d)2.本例条件不变的情况下,求证:ea-c>eb-d.[证明]∵c<d<0,∴-c>-d>0.∵a>b>0,∴a-c>b-d>0,∴0<1a-c<1b-d,又∵e<0,∴ea-c>eb-d.利用不等
式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的
性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.已知a>b,e>f,c>0,求证:f-ac<e-bc.[证明]∵a>b,c>0,∴ac>bc.-5-又∵e>f,∴e+ac>f+bc,∴e-bc>f-ac,∴f-ac<e-bc.
不等式性质的应用[探究问题]1.小明同学做题时进行如下变形:∵2<b<3,∴13<1b<12,又∵-6<a<8,∴-2<ab<4.你认为正确吗?为什么?提示:不正确.因为不等式两边同乘以一个正数,不等号的方向不变,但同乘以一个负数,不等号方向改变,在本题中只知
道-6<a<8.不明确a值的正负.故不能将13<1b<12与-6<a<8两边分别相乘,只有两边都是正数的同向不等式才能分别相乘.2.由-6<a<8,-4<b<2,两边分别相减得-2<a-b<6,你认为正确吗?提示:不正确.因为同向不等式具有可加性.但不能相减,解题时要充分利用条
件,运用不等式的性质进行等价变形,而不可随意“创造”性质.3.你知道下面的推理、变形错在哪儿吗?∵2<a-b<4,∴-4<b-a<-2.又∵-2<a+b<2,∴0<a<3,-3<b<0,∴-3<a+b<3.这怎么与-2<a+b<2矛盾了呢?提示:利用几个不等式的范围来确定某不等式的范围要注意:同
向不等式两边可以相加(相乘),这种转化不是等价变形.本题中将2<a-b<4与-2<a+b<2两边相加得0<a<3,又将-4<b-a<-2与-2<a+b<2两边相加得出-3<b<0,又将-6-该式与0<a<3两边相加得出-3<a+b<3,多次使用
了这种转化,导致了a+b范围的扩大.【例3】已知1<a<4,2<b<8,试求a-b与ab的取值范围.[思路点拨]依据不等式的性质,找到-b与1b的范围,进而求出a-b与ab的取值范围.[解]因为1<a<4,2<b<8,所以-8<-b<-2.所
以1-8<a-b<4-2,即-7<a-b<2.又因为18<1b<12,所以18<ab<42=2,即18<ab<2.求含字母的数(或式子)的取值范围时,一要注意题设中的条件,二要正确使用不等式的性质,尤其是两个同方向的不等式可加不可减,可乘不可除.3.已知-π2≤α<β≤π2,求α+β2,α
-β2的取值范围.[解]∵已知-π2≤α<β≤π2,∴-π4≤α2<π4,-π4<β2≤π4,两式相加,得-π2<α+β2<π2.∵-π4<β2≤π4.∴-π4≤-β2<π4.∴-π2≤α-β2<π2,-7-又知α<β,
∴α-β2<0.故-π2≤α-β2<0.1.在应用不等式性质时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.2.要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.1.思考辨析(1)若a>b,则ac>bc一定成立.()(2)若a+c>b+d,则a>
b,c>d.()[提示](1)错误.由不等式的可乘性知,当不等式两端同乘以一个正数时,不等号方向不变,因此若a>b,则ac>bc不一定成立.(2)错误.取a=4,c=5,b=6,d=2.满足a+c>b+d,但不满足a>b.[答案](1)×(2)×2.如果a>b>0,c>d>0,则
下列不等式中不正确的是()A.a-d>b-cB.-ad<-bcC.a+d>b+cD.ac>bdC[由已知及不等式的性质可得a+c>b+d,即a-d>b-c,所以A正确;由c>d>0,得1d>1c>0.又a>b>0,所以ad>bc,-ad<-bc即B正确;显然D正确,因此不正确的选项是C.]
3.若-1<α<β<1,则下列各式中恒成立的是()A.-2<α-β<0B.-2<α-β<-1C.-1<α-β<0D.-1<α-β<1A[由-1<α<1,-1<β<1,-8-得-1<-β<1.∴-2<α-β<2,但α<β.故知-2<α-β<0.
]4.若bc-ad≥0,bd>0.求证:a+bb≤c+dd.[证明]因为bc-ad≥0,所以ad≤bc,因为bd>0,所以ab≤cd,所以ab+1≤cd+1,所以a+bb≤c+dd.