【文档说明】河北省保定市六校联盟2022-2023学年高二下学期期中联考数学答案.pdf,共(6)页,439.161 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-8d426c281be8eac4104363a2cf99f008.html
以下为本文档部分文字说明:
第1页共5页六校联盟高二年级联考(2023.04)数学试卷参考答案1-8DDCACBBA9-12BCDABCDACD13-1624015/28������������−2[1������������,+∞)17.(1)(
)72ax−的二项展开式的通项为77177C(2)(2)CrrrrrrrrTaxax−−+=⋅−−=,……1分令3r=,得337730(22682)Ca−=−−,29a∴=,又0a>,3a∴=;…………………………3分(2)(i)由(1)得()()()()72701273211
1xaaxaxax−=+−+−++−,令2x=得()701273221aaaa++++=−×=−①,令0x=得701273aaaa−+−−=②,…………………………4分①+②得()70246213aaaa+++=−+,()702461132aaaa∴+++=−+,②−②得()71357213
aaaa+++=−−,()713571132aaaa∴+++=−−,…………5分()()()()()771402461357111131313224aaaaaaaa∴+++⋅+++=−+×−−=−;……7分(ⅱ)令1xt−=,则1xt=+,()()7727012732112
ttaatatat∴−+=−=++++,()712t−的二项展开式的通项为177C(2)(2)CkkkkkkMtt+−−==,0246,,,aaaa∴为正数,1357,,,aaaa为负数,01277012732187aaaaaaaa∴=−+−−==++++.………………
…………10分(以上结果可保留幂的形式)18.(1)依题意,(0)1f=−,切点(0,1)−在切线210xby++=上,则1b=,………………1分()fx′=()()()22e21e4e241xxxxaxxaxaxa+−++=+++−
,而()fx的图象在点()()0,0f处的切线斜率为2−,(0)f′=12a−=−,解得得1a=−,所以函数()fx的解析式为()()2e21xfxxx=−−.…………………………4分(2)由(1)知,()fx′=()()()
2e232e221xxxxxx+−=+−,由()0fx′=得2x=−或12x=,…………………………6分当[3,1]x∈−时,32−<<−x或112x<<,有0fx,122x−<<,有()0fx′<,因此函数()fx在1
[3,2],[,1]2−−上单调递增,在[]12,2−上单调递减,…………8分又()3203ef−=,()292ef−=,121e2f=−,(1)0f=,…………………………11分所以()fx在[]3,1−上的最大值为29e,最小值为12
e−.…………………………12分19.记事件B:“小明获胜”,记事件Ai:“小明与第i(i=1,2,3)类棋手相遇”,由题可得,������������(������������1)=520=0.25,������������(����
��������2)=720=0.35,������������(������������3)=820=0.4,……1分������������(������������|������������1)
=0.6,������������(������������|������������2)=0.5,������������(������������|������������3)=0.4.…………3分
(1)由全概率公式可知������������(������������)=������������(������������1)������������(������������|������������1
)+������������(������������2)������������(������������|������������2)+������������(������������3)������������(������������|������������3)=
0.25×0.6+0.35×0.5+0.4×0.4=0.485.……6分(2)由条件概率公式可得������������(������������1|������������)=������������(������������1�������
�����)������������(������������)=������������(������������1)������������(������������|������������1)������������(����
��������)=0.25×0.60.485=3097,同理可得,������������(������������2|������������)=3597,������������(������������3|������������)
=3297.第3页共5页即小明获胜,对手分别为一、二、三类棋手的概率为3097、3597、3297.…………………………12分(第二问的三个结果每个2分)20.(1)因()23lnfxxax=−,则()23232axafxxxx−=−=′.()()
3300022,aafxxfxx′′>⇒><⇒<<.则()fx在30,2a上单调递减,在3,2a+∞上单调递增,故()33332222minlnaaaafxf==−
.………………2分因()2lngxaxax=−,则()22aaxagxaxx−=−=′.()()1100022,gxxgxx′′>⇒><⇒<<.则()gx在10,2上单调递减,在1,2+∞上单调递增,故()122minlngxgaa==+.…………
………………4分令331222333133222222222lnlnlneaaaaaaa−=+⇒=⋅⇒=⋅2133223ea−⇒=⋅⋅.则若()fx和()gx的最小值相等
,2133223ea−=⋅⋅.…………………………6分(2)由()()fxgx=,可得23ln2lnxaxaxax−=−,即()22lnxaxx=+,所以12������������=������������+��������������������������������������������
����2,…………………………7分问题转化为函数������������=12������������与������������=������������+������������������������������������������������2图像恰有一个交点,构
造函数ℎ(������������)=������������+������������������������������������������������2,ℎ′(������������)=�1+1�������������������������2−2�������
�����(������������+������������������������������������)������������4=1−������������−2����������������������������
��������������������3令������������(������������)=1−������������−2������������������������������������,在(0,+∞)单调递减,
且������������(1)=0.所以当������������∈(0,1)时,������������(������������)>0,ℎ′(������������)>0,ℎ(������������)单调递增;当������������∈(1,+
∞)时,������������(������������)<0,ℎ′(������������)<0,ℎ(������������)单调递减;……………9分并且当������������→0时,ℎ(������������)→−∞
;当������������→+∞时,ℎ(������������)→0.所以12������������=ℎ(1)=1,即������������=12.…………………………12分21.(1)(i)因为25010025
=,所以()21000,10YN,因为()220.9545Pµσηµσ−≤≤+=,所以()10.954520.022752Pηµσ−≤−==,因为9801000210=−×,()()98020.02275PYPYµσ≤=≤−=;…………3分(ii
)由一问知()()98020.02275PYPYµσ≤=≤−=,庞加莱计算25个面包质量的平均值为978.72g,978.72980<,而0.022750.05<,为小概率事件,小概率事件基本不会发生,这就是庞加莱举报该面包师
的理由;…………………………3分(2)设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,………………7分则()143154530265287140pξ==××+××=;()124135449122265287840pξ==×××+×××=,()121132732265287840pξ=
=××+××=,…………………………10分故分布列为:第5页共5页ξ012p5314044984073840()5344973119012140840840188Eξ=×+×+×=…………………………12分22.(1)当������������=2时
,������������(������������)=������������2−2������������−4������������������������������������,������������′(��
����������)=2������������−2−4������������=2(������������+1)(������������−2)������������,…2分������������∈(0,2)时
,������������′(������������)<0,������������(������������)单调递减;������������∈(2,+∞)时,������������′(������������)>0,������������(������������)单调递增.…
………………………4分(2)������������(������������)=−������������2������������������������������������+������������2−������������������������,则������������′
(������������)=−������������2������������+2������������−������������,…………………………5分由题意,知������������(������������)=������������有两解��������
����1,������������2,不妨设������������1<������������2,要证������������′�������������1+������������22�>0,即证−2������������2�
�����������1+������������2+������������1+������������2−������������>0.①若������������≤0,则������������1+��������
����2−������������>0;②若������������>0,由������������′(������������)=−������������2������������+2�������
�����−������������=(2������������+������������)(������������−������������)������������知,������������(������������)在�
0,�������������上单调递减,在�������������,+∞�上单调递增,也有������������1+������������2>������������,综合①②知,������������1+������������2>������������,所以只需证�������
�����2������������1+������������2−������������<������������1+������������22(*).…………………………7分又−������������2�������������������������
�����������1+������������12−������������������������1=������������,−������������2������������������������������������2+������������22−������
������������������2=������������,两式相减,整理得������������2������������1+������������2−������������=������������1−������������2��������������������
����������������1−������������������������������������2,代入(*)式,得������������1−������������2������������������������������������1−��������
����������������������������2<������������1+������������22,即−2�������������1������������2−1�����������
��1������������2+1+������������������������������������1������������2<0.令������������1������������2=������������(0<������������<1)
,即证−2(������������−1)������������+1+������������������������������������<0.…………………………9分令������������(������������)=−2(������������−1)�����
�������+1+������������������������������������(0<������������<1),则������������′(������������)=−4(������������+1)2+1��
����������=(������������−1)2(������������+1)2������������>0,所以������������(������������)在其定义域上单调递增,所以������������(������������)<�����
�������(1)=0,所以������������′�������������1+������������22�>0成立.…………………………12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com