【文档说明】山西省长治市第二中学校2021届高三9月质量调研考试数学(理科)试卷含答案.docx,共(12)页,771.918 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-739a022465fdb4eb13b60c10f4e5c9c1.html
以下为本文档部分文字说明:
长治市第二中学校2021届高三9月质量调研考试数学试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上相应的位置。3.全部答案写在答题卡上,写在本试卷上无效。4.本试题满分150分,考试时间120分钟。5.考试
范围:高考全部内容。第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.已知aR,若()2i1aa−+−(i为虚数单位)是实数,则a=()A.2B.1C.1−D.2−2.已知集合(
)lg2|3Axyx==−,2|4Bxx=,则=AB()A.322xx−B.2xxC.322xx−D2xx3.某几何体的三视图如图,ABC△是边长为2的等边三角形,P为线段AB的中点,三视图中的点C,P分别对应几何体中的点M,N,则在几何体
侧面展开图中M,N之间的距离为()A.3B.3C.5D.54.若点P为抛物线24yx=上的动点,F为该抛物线的焦点,则PF的最小值为()A.2B.1C.18D.1165.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了
一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角12=,现在向该大正方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是()A.12B.58C.34D.786.已知点(
)1,0A,(2,3)B,,()2Cm−−,向量AC,AB的夹角为56,则实数m=()A.23B.3C.0D.3−7.已知各项为正数的等比数列na满足2589aaa=﹐则3334353637logloglogloglogaaaaa++++的值为()A.73B.83C.3D.1038.已知
函数22()(sincos)2cosfxxxx=++的图像向右平移4个单位长度后得到函数()gx的图像,则函数()gx在[0,]上的单调递减区间是()A.37,88B.3,44C.30,,,44D.3
70,,,889.在()()51231xx−+的展开式中,含3x项的系数为()A.80−B.40−C.40D.12010.在ABC△中,内角A、B、C的对边分别为a,b,c,满足33c=,
sinsin2CcAa=,则ABC△面积的最大值为()A.348B.336C.324D.31211.在菱形ABCD中,3A=,||43AB=,将ABD△沿BD折起到PBD△的位置,二面角PBDC−−的大小为23,则三棱锥PBCD−的外接球的表面积为()A.23B.27C.72
D.11212.定义函数()348,1221,222xxfxxfx−−=,则函数()()6gxxfx=−在区间*[](1,2nnN)内的所有零点的和为()A.()3
212n−B.2nC.3(21)4n−D.n第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.已知x,y满足约束条件5503xyxyx+−+,使
()0zxaya=+取得最小值的最优解有无数个,则a的值为________.14.函数2()lnfxaxbx=−在点()2,2Pf处的切线方程为32ln22yx=−++,则ab+=________.15.已知1F,2F分别是双曲线()2222:10,0xyCa
bab−=的左、右焦点,AB是右支上过2F的一条弦,234AFAB=且1212AAFABF+=,则C的离心率为________.16.在一个棱长为12的正方体形状的铁盒内放置一个正四面体(四个面都是正三角形的三棱锥),且能使该正四
面体在铁盒内任意转动,该正四面体的体积的最大值是________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。必考题:共60分。17.(本题满分12分)已知等差数列
na的前n项和为nS,47a=,525S=,数列nb满足113b=,113nnnbbn++=.(1)求数列na,nb的通项公式;(2)求数列nb的前n项和nT.18.(本题满分12分)如图,四棱锥SABCD−
中,22SDCDSCABBC====,平面ABCD⊥底面SDC,ABCD,90ABC=,E是SD中点.(1)证明:直线AE平面SBC;(2)点F为线段AS的中点,求二面角FCDS−−的大小.19.(本题满分12分)在全面抗击新冠肺炎疫情这一特殊时期,学生线上学习。某校数学教师为了
调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占813,统计成绩后得到如下列联表:分数不少于120分分
数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)(i)按照分层抽样的方法,在上述样本
中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是X,求X的分布列(概率用组合数算式表示);(ii)若将频率视为概率,从全校高三该次检测
数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差。(下面的临界值表供参考)()2PKk0.100.050.0250.0100.0050.001k2.7063.8415.0246.635
7.87910.828(参考公式22()()()()()nadbcKabcdacbd−=++++,其中nabcd=+++)20.(本题满分12分)已知点()0,1N,椭圆2222:1(0)xyEabab+=的离心率为32,F是椭圆E的右焦点,直线NF的斜率为33−.(1)求椭圆E
的方程;(2)过点1(2,)P−作直线l,交椭圆E于异于点N的A,B两点,直线NA,NB的斜率分别为1k,2k,证明12kk+为定值.21.(本题满分12分)已知函数()xfxemx=−.(1)讨论(
)fx的单调区间与极值:(2)已知函数()fx的图象与直线ym=−相交于11(),Mxy,()22,Nxy两点()12xx,证明:124xx+.(二)选考题,共10分。请考生在第22、23题中任选
一题作答。如果多做,则按所做的第一题计分。22.[选修4—4:坐标系与参数方程](本题满分10分)已知平面直角坐标系xOy,以O为极点,x轴的非负半轴为极轴建立极坐标系,P点的极坐标为3,3,曲线C的极坐标
方程2cos3=−.(1)写出点P的直角坐标及曲线C的直角坐标方程;(2)若Q为曲线C上的动点,求PQ的中点M到直线l:cos2sin23+=的距离的最小值。23.[选修4—5:不等
式选讲](本题满分10分)设函数()12fxxx=++−.(1)求不等式()4fx的解集;(2)设*,,abcR,函数()fx的最小值为m,且111234mabc++=,求证:2343abc++.理科数学答案一、选择
题1.A2.D3.C4.D5.A6.B7.D8.A9.C10.B.11.D12.A二.填空题13.114._3___5.10216.643三.解答题17.解:(1)数列}{na的首项为1a,公差为d,由题意得:=+=
+2524557311dada······························································································1分解得:==211da····················
······························································································2分12)1(1−=−+=ndnaan·············
··················································································3分又nnbbbnnbnnnn313111+=+=++······························
····························································4分1211211213(1)3(2)3133nnnnnnbbbnnnbbbbbnn−−−−===−−····························
·····················6分(2)由(1)可得:13nnbn=nnbbbT++=211211112333nn=+++······························
···················································7分2311111123333nnTn+=+++··············
·····························································8分1212111133333nnnTn+=+++−
1111133111111323313nnnnnn++−=−=−−−································
·················10分131313231323114323443443nnnnnnnTn+++=−−=−=−····
······················11分nT的表达式为3231443nnnT+=−··············································································12
分18.证明:(1)如图,取SC中点G,连接BG,EG,因为EG为SDC△中位线,所以//EGCD且12EGCD=,···········································
···············································1分又因为//ABCD且12ABCD=,所以//EGCD且EGAB=,所以四边形AEGB为平行四边形,所以//AE
BG,·································································3分又因为BG平面SBC,AE平面SBC,所以//AE平面SBC···········
·····························································································5分(2)设1AB=,则1BC=,2CD=,取CD中点O,所
以12COCDAB==又因为//ABCD,90ABC=,所以四边形ABCO为矩形,所以AOCO⊥,AOCD⊥,平面ABCD平面SDCCD=,所以AO⊥平面SDC,AOSO⊥,又因为三角形SDC为正三
角形,所以SOCD⊥,··············································································································7分故如图建立空间直角坐标
系Oxyz−,可得,(0,0,1)A,(3,0,0)S,(0,1,0)C,(0,1,0)D−,31,0,22F,所以31,1,22FC=−−,31,1,22FD=−−−,设平面FCD的一个法向量为(,,)mabc=,则00FCmFDm=
=,可取(1,0,3)m=−,易知平面SDC的一个法向量(0,0,1)n=,所以3cos,||||2mnmnmn==,又知二面角FCDS−−为锐角,则二面角FCDS−−的大小为6·····
··················································································12分19.解:(1)分数不少于120分分数不足120分合计每周线上学习数学时间不少于5小
时15419每周线上学习数学时间不足5小时101626合计252045由22列联表可知:2245(1516104)7.2876.63525201926K−=·····························
···········································4分所以,有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)(i)由分层抽样知,需要从分数不足120分的学生中抽取920445=,又分数不足120分且每周线上学习时间不足
5小时的人数为16人.设抽取的20人中每周线上学习时间不足5小时的人数为X,所以X的可能取值为1642040,1,2,3,4.()(0,1,2,3,4)4CkCkPXkkC−===X的分布列为:X01234P04164420C
CC13164420CCC22164420CCC31164420CCC40164420CCC··································································································
···································9分(ii)从全校数学成绩不少于120分的学生中随机抽取1人此人每周上线时间不少于5小时的概率为150.625=,设从全校数学成绩不少于120分的学生中随
机抽取20人,这些人中每周线上学习时间不少于5小时的人数为Y,则()~20,0.6YB,所以()200.612,()200.6(10.6)4.8EYDY===−=···················································12分20
.解:(1)设)0,(cF,由条件知,,331−=−c得3c=.又23=ac,所以2a=,2221bac=−=.故E的方程为2214xy+=.·······························································
································4分(2)当直线l的斜率不存在时,直线l与椭圆只有一个交点,不满足题意。当直线l的斜率存在时,设其方程为11221(2),(,),(,)ykxA
xyBxy+=−,将直线l方程代入椭圆1422=+yx,整理得01616)12(8)14(:222=+++−+kkxkkxk··································································6分则1228(
21)41kkxxk++=+,2122161641kkxxk+=+,······································································8分由题知21,
xx不为零,从而212121221121))(22(211xxxxkxkxxyxykk++−=−+−=+.1)12(21616)12)(22(822−=+−=+++−=kkkkkkkk综上,恒有121kk+=−.·························
·······································································12分21.解:(1)'()xfxem=−,·······································
····················································1分①当0m时,'()0fx,此时()fx在R上单调递增,无极值;②当0m时,由'()0fx=,得lnxm=.所以(,ln)xm−时,'()0fx,()fx单调递减;(ln,)x
m+时,'()0fx,()fx···················································································3分此时函数有极小值为(ln)lnfmm
mm=−,无极大值·····························································4分(2)方法一:由题设可得12()()fxfxm==−,所以1212(1)(1)xxemxemx=−=−5分且由
(1)可知1lnxm,2lnxm,2em.由11(1)xemx=−,可知110x−,所以120111xx−−.设211(1)xxt−=−+(0t),由212111xxxeex−=−,得11(1)e1txtx−+=−,所以11e1ttx−=−,即11e1ttx=+−,所以2
e1e1tttx=+−··································································································
··········6分124xx+e2e1e1ttttt+−−e2e2tttt+−2ee20tttt−−−.设()2ee2tthttt=−−−(0t),·················································
····································8分则'()ee1tthtt=−−,设()'()ee1ttgthtt==−−,则'()etgtt=−,所以'()0gt.所以'()ht在(0,)+单调递减,'()'(0)1010hth=−−=····
·················································10分所以()ht在(0,)+单调递减,()(0)20020hth=−−−=.··················
·····························11分所以124xx+······································································································
········12分方法二:由题设可得12()()fxfxm==−,所以1212(1)(1)xxemxemx=−=−,························································5分且由(1)可知1lnxm,2lnxm,2em
.由11(1)xemx=−,可知110x−,所以120111xx−−.由1212(1)(1)xxemxemx=−=−,得1122lnln(1)lnln(1)xmxxmx=+−=+−,··········································
···························6分作差得22111ln1xxxx−=−−设211(1)xtx−=−(1t),由22111ln1xxxx−=−−,得1ln(1)(1)ttx=−−,所以1ln11txt−=−,即1
ln11txt=+−,所以2ln11ttxt=+−,·····························································································
·············8分124xx+lnln211ttttt+−−(1)ln21ttt+−4ln201tt+−+.设4()ln21httt=+−+(1t),····························································
····························9分则22(1)'()0(1)thttt−=+.所以()ht在(1,)+单调递增,()(1)0220hth=+−=·········································
··············11分所以124xx+············································································
··································12分22.解:(1)点P的直角坐标为333,22;····································································1分由s32co
=−得2co3ssin=+①···························································2分将222xy=+,cosx=,siny=代入①,可得曲线C的直角坐标
方程为2211223xy−+−=.····················································4分(2)直线:l3cos2sin2+=的直角坐标方程为0322xy+−=,··········
····················6分设点Q的直角坐标为cos,si123n2++,则cossin1,232M++,·····························
·····7分那么M到直线l的距离:()2233cossin12225sin2cos2sin22252521d+++−++++===+,所以M到直线:cos2sin23l+=的距离的最小值
为0················································10分23.解:(1)12,1()123,1221,2xxfxxxxxx−−=++−=−−·····················
·······································2分()4fx,1241xx−−或2142xx−,32x−或52x,·························
···················4分不等式的解集为35,,22−−+;···········································································5分(2)证明:由(1)知min()3f
x=,3m=,1113234mabc++==,·································7分1113(234)(234)234abcabcabc++=++++2324433324234abaccbbacabc=++++++2
3244332229324234abaccbbacabc+++=,2343abc++,当且仅当2341abc===,即12a=,13b=,14c=时取等号,2343abc++···············
···························································································10分