【文档说明】黑龙江省哈尔滨市德强高级中学2024-2025学年度高三上学期10月数学学科(I)试卷 答案.docx,共(5)页,230.152 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-6e0b03d4ed6144f3b9e23b81eeb1b707.html
以下为本文档部分文字说明:
德强高中2024-2025学年度上学期10月月考(Ⅰ)卷答案1-4.BDAB5-8.CDCA9.ABC10.ABD11.AD12.213.36214.6315.【详解】(1)因为2nSnn=+,当1n=时,11112aS==+=,当2n时,()2111nSnn−=−+−,所以()221(1)1
2nnnaSSnnnnn−=−=+−−+−=.显然当1n=时,1212a==依然成立,∴数列na的通项公式为2nan=.(2)由(1)知122nnnnban−==,则212222nnTn=+++,231212222nnTn+=+++,所以()122111222222
2212212nnnnnnTnnn++++−−=++++−=−=−−−L,所以()1122nnTn+=−+.16.【详解】(1)()π33sin23cos26sin26fxxxx=+=+,则2ππ2T==;(2)令πππ2π2
2π262kxk−+++,得ππππ,Z36kxkk−++,所以函数()yfx=的单调增区间为πππ,π,Z36kkk−++;(3)由π,02x−,得π2ππ2,636x+−
,所以π1sin21,62x+−,所以函数()yfx=的值域为)6,3−.17.【详解】(1)因为23sin2sin12BB−=,可得()3sin1cos1BB−−=,故3sincos2BB+=,故π2
sin26B+=,可得πsin16B+=,因为()0,πB,ππ7π,666B+,所以ππ62B+=,可得π3B=.(2)若选①:由BD平分ABC得:ABCABDBCDSSS=+△△△,即1π1π1πsin3sin3
sin232626acac=+,即()3acac=+,在ABCV中,由余弦定理得222π2cos3bacac=+−,即2212acac+−=,两式联立可得43ac+=,所以ABCV的周长为432363abc++=+=;若选②:D为线段AC的中点,故()12BDBABC=+,()()2
22211244BDBABCBABABCBC=+=++,因为π3B=,3BD=,故221πs2943coccaa++=,整理可得2236acac++=,在ABCV中,由余弦定理得222π2cos3bac
ac=+−,所以2212acac+−=,两式联立可得12ac=,所以43ac+=,从而ABCV的周长为432363abc++=+=.18.【详解】(1)由已知当2n,Nn时,1nnnSSa−+=,0na,所以10n
nSS−+,又1nnnaSS−=−,所以()()1111nnnnnnnnSSSSSSSS−−−−+=−=+−,所以11nnSS−−=,所以数列nS为等差数列,公差为1,又111Sa==,所以nSn=,所以当2n,Nn时,1121nnnaSSnnn−=+=+−=−,又11211a
==−,所以21nan=−,Nn,设等比数列nb的公比为q,因为110ab+=,2233443ababab==++−,所以111ba=−=−,323357qqq−=−+=,所以1q=−,所以()1nnb=−(2)由(1)()()()()1111212142121nnnncnnnn−−
==+−+−+,所以()()111142121nnncnn+−−=−−+,所以数列nc的前n项和()()11111111111114343545742121nnnTnn+−−=−−+++−−++−−+
,所以()11484nnTn−=−++.(3)由(1)知222111(21)441nannn==−−+,当2n时,22111114441nannnn=−−−,则2221211111111111115111141223144
4naaannn++++−+−++−=+−+=−当1n=时,211514a=,即对任意的*nN,都有22221121111514naaaa=+++,所以222121111na
aa+++=19.【详解】(1)(i)由()eesh2xxx−−=,令()()()eesh,02xxFxxxxx−−=−=−,则()ee102xxFx−+=−,所以𝐹(𝑥)在(0,+∞)上单调递增,所以()()()()sh0=sh000FxxxF=−−
=,所以当0x时,()shxx成立;(ii)令()()21cos1,02Hxxxx=−+,则()sinHxxx−=+,令()sinxxx=−,则()1cos0xx=−,因此𝜑(𝑥)在(0,+∞)上单调递增
;所以()()sin00xxx=−=,故sinxx,即()sin0Hxxx=−+,所以()Hx在(0,+∞)上单调递增,即()()21cos1002HxxxH=−+=,所以当0x时,21cos12xx−成立;(2)由0x时,21cos12xx−成立,令1,1xnn=,且
*Nn,则211cos12nn−,即222112211cos111124412121nnnnnn−=−−=−−−−+,由题意()()()sh22shchxxx=,令1,1xnn=且*Nn,可得211sh2shchnnn=
,因为()eech12xxx−+=,所以2111sh2shch2shnnnn=,由①当0x时,()shxx,所以令1,1xnn=且*Nn,可得11shnn,所以21112sh2shch2shnnnnn
=,由前面解答过程得,对任意0,sinxxx成立,令1,1xnn=且*Nn,可得11sinnn,所以21112111sh2shch2sh2sin2costann
nnnnnnn==,又1n且*Nn,所以101n,所以2sh1112cos2112121tannnnnn−
−−+所以可得()()22shshsh2sh11111132111111tan13352121tantantan23nnnn++++−−+−++−−−+
242222121nnnnn=−+=−++,即可得()()()*22shshsh2sh1432N111tan121tantantan23nnnnnn++++−+.