【文档说明】福建省三明市2022-2023学年高一下学期4月期中考试数学试题 .docx,共(6)页,457.513 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-6c7a1cb148b9ba321b5dc9c1c0f74578.html
以下为本文档部分文字说明:
2022-2023学年第二学期高中期中考试高一数学一、单项选择题:本题共8小题,每小题5分,共40分.1.若复数()ii2ixy−=+,,Rxy,则复数xy+=()A.1−B.3C.1D.3−2.若2i(12iz=−),则z=()A.43i
+B.43i−C.43i−+D.43i−−3.如图,平面平面l=,,AB,C,Cl,直线ABlD=(点D不同于,,ABC),过,,ABC三点确定的平面为,则平面,的交线必过()A.点AB.点BC
.点C,但不过点DD.点C和点D4.已知向量()2,3a=,()1,3b=−,则a在b上的投影向量为()A.13,44−B.13,44−C.13,22−D.13,22−5.已知向量(cos,3)a=,(
sin,4)b=−,//ab,则3sincos2cos3sin+−的值是()A.12−B.2−C.43−D.126.已知()1,0a=,()2,1b=r,若()()2kabab−⊥+,则k的值为
()A12B.125−C.12−D.1257.在ABC中,角A、B、C所对的边分别为a、b、c,已知45B=,22a=,为使此三角形有两个,则b满足的条件是()A.222bB.02bC.022bD.22b或2b=8.东汉末年的数学
家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦.图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小
等边三角形ABC拼成的一个大等边三角形ABC,若112,cos14ABABB==,则AB=()A.5B.6C.7D.8二、多项选择题:本题共4小题,每小题5分,共20分.部分选对的得2分.9.下列关于复
数21iz=−四个命题,其中为真命题的是()A.2z=B.22iz=C.z的共轭复数为1i−+D.z是关于x的方程2220xx+=−的一个根10.如图是一个正方体侧面展开图,在原立方体中,以下关系判断正确的是()A.//ABCDB.GH与CD相交C.//EFC
DD.AB与GH异面11.设非零向量,ab的夹角为c,为任意非零向量,定义运算sinabab=,则下列结论正确的是()A.若0ab=,则//abB.()abcabac+=+C.()()222s
in2ababab=D.若1ab==,则ab的最大值为112.在锐角ABC中,角A,B,C所对边分别为a,b,c,外接圆半径为R,若3a=,3A=,则()A.1R=B32b的的.C.bc的最大值为3D.223bcbc++的取值范围为(11,15三、填空题:本题共4小题,
每小题5分,共20分13.复数20231iz=+(其中i是虚数单位)的虚部是__________.14.已知点()11,3P,()24,6P−,P是直线12PP上的一点,且122PPPP=,那么点P的坐标为_________
.15.如图,已知A,B,C共线,且向量4ACBC=,OBOAOC=+,则=________.16.在平面四边形ABCD中,BCD△是等边三角形,2AD=,27BD=,120BAD=,则cosABD=________;ABC的面
积是________.四、解答题:本小题共6小题,共70分.17.已知复数()()2223232izmmmm=−−+−+,其中i为虚数单位,Rm.(1)若z是纯虚数,求m的值;(2)z在复平面内对应的点在第二象限,求m的取值范围.18.已知4a=,
2b=,且a与b夹角为120,求:(1)2ab−;(2)a与ab+的夹角.19.如图,长方体1111ABCDABCD−的底面是正方形,E,F分别是1BB,11BC上的点,且112CFBF=,12BEBE=.(1)证明:点F在平面1ADE内;(2)若124AAAB==,求三棱锥1−DADE体积.20
.记ABC的内角A,B,C的对边分别为a,b,c,已知2cosbacBc+=,2c=.(1)求A;(2)若10a=,点D在边BC上,2CDDB=,求AD.21.从以下三个条件中选一个,补充到下面问题中,并解
答.已知锐角ABC的内角A,B,C的对边分别为a,b,c,满足________(填写序号即可).①2sincoscos0aBbCcB−−=,②222sinsinsin3sinsin0ABCAC−+−=,③sinsin3sincosco
s0ACBAC−−=(1)求B;(2)若1a=,求bc+的取值范围.22.在路边安装路灯,灯柱AB与地面垂直(满足90BAD=),灯杆BC与灯柱AB所在平面与道路垂直,且120ABC=,路灯C
采用锥形灯罩,射出的光线如图中阴影部分所示,已知60ACD=,路宽12mAD=.设灯柱高()mABh=,()3045ACB=.(1)当30=时,求四边形ABCD的面积;的(2)求灯柱的高h(用表示);(3)若灯杆BC与灯柱AB所用材料相同,记此用料长度和为S,求S关于的
函数表达式,并求出S的最小值.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com