【文档说明】《决胜2022年新高考数学中档题提分精练》第07讲 数列的综合问题(解析版).docx,共(19)页,1.950 MB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-6aa769e8162ca8997ce080b817141ba8.html
以下为本文档部分文字说明:
第07讲数列的综合问题题型一:数列的单调性与最值1.已知首项为32的等比数列{}na不是递减数列,其前n项和为nS(*)nN,且33Sa+,55Sa+,44Sa+成等差数列.(1)求数列{}na的通项公式;(2)若实数a使得1nnaSS+对任意*nN恒成立,求a的取值范围.【解答】解:(1)
设等比数列{}na的公比为q,由33Sa+,55Sa+,44Sa+成等差数列,可得:5533442()SaSaSa+=+++,即3453342(2)22SaaSaa++=++,即有534aa=,即为214q=,解得12q=,由等比数列{}na不是递减数列,可得12q=
−,即11313()(1)222nnnna−−=−=−.(2)由(1)得11,121()121,2nnnnnSn−=−−=+为偶数为奇数当n为奇数时,nS随n的增大而减小,所以1312nSS=„113(2,]6nnSS+.当n为偶数时,nS随n的增大而增大,所
以2314nSS=…125(2,]12nnSS+实数a使得1nnaSS+对任意*nN恒成立,则a的取值范围为13(6,)+2.已知数列{}na满足11a=,且211nnnaanan+=−++,*nN.(1)求{
}na的通项公式;(2)设21nnba=−,求使不等式12111(1)(1)(1)21npnbbb++++…对一切2n…且*nN均成立的最大整数p.【解答】解:(1)数列{}na满足11a=,且211nnnaanan+=−
++,*nN,整理得:22a=,33a=,故猜想nan=,证明如下:(1)当1n=时,显然成立;(2)当nk=时,kak=,当1nk=+时,2111kkkaakakk+=−++=+,即当1nk=+时,猜想成立,所以nan=.(2)由题意得12
1111(1)(1)(1)21npbbbn++++„对2n…,*nN恒成立,记121111()(1)(1)(1)21nFnbbbn=++++,则212121211111(1)(1)(1)(1)(1)224842311111()4832123(1)(1)(1)21nnnbbbbFnnnnnF
nnnnnbbbn++++++++++===++++++++.()0Fn,(1)()FnFn+,即()Fn是随n的增大而增大,()Fn的最小值为12(1)2(31)3(2)(1,2)515F++==,pZ,所以1maxp
=.3.已知数列{}na满足1231(1)(41)23(1)6nnnnnaaanana−+−++++−+=.(Ⅰ)求2a的值;(Ⅱ)若111nniiiTaa=+=,则求出2020T的值;(Ⅲ)已知{}nb是公比q大于1的等比数列,且11ba=,35ba=,设112nanncb+
+=−,若{}nc是递减数列,求实数的取值范围【解答】解:(Ⅰ)由题意,数列{}nna的前n项和(1)(41)6nnnnS+−=.当1n=时,有1111aS==,所以11a=.当2n…时,1(1)(41)(1)(45)66nnnnnnnnnnaSS−+−−−=−=
−22[(1)(41)(1)(45)][(431)(495)](21)66nnnnnnnnnnnn=+−−−−=+−−−+=−.所以,当2n…时,21nan=−;又11a=符合,2n…时na与n的关系式,所以21nan=−.所以2a的值为3.(Ⅱ)由(Ⅰ)可知21nan=
−.可令11nnncaa+=,111111()(21)(21)22121nnaannnn+==−−+−+,因为111nniiiTaa=+=,所以12233411111nnnTaaaaaaaa+=++++11111111[
(1)()()()]2335572121nn=−+−+−++−−+11(1)22121nnn=−=++.所以2020T的值为20204041.(Ⅲ)由111ba==,359ba==得29q=.又1q,所以3q=.所以1113nnnbbq−−==
,11223nannnncb++=−=−.因为{}nc是递减数列,所以1nncc+,即112323nnnn++−−.化简得232nn.所以*nN,12()23n恒成立.又12()23n是递减数列,所以12()23n的最
大值为第一项1121()233a==.所以13,即实数的取值范围是1(,)3+.4.已知数列{}na的前n项和为nS,且22nnaaSS=+对一切整数n都成立.(1)求1a,2a的值(2)若10a,设数列{}nb的前n项和为nT,且满足110nnablga=,证明{}nb是等
差数列;(3)当n为何值时,nT最大?并求出nT的最大值.【解答】解:(1)22nnaaSS=+对一切整数n都成立.21121aaaaa=++,21212()2()aaaaa+=+,联立解得121a=+,222a=+.或112a=−,222a=−.(2)证明:
10a,取121a=+,222a=+.(22)(322)nnaS+=++,2n…时,11(22)(322)nnaS−−+=++,1(22)(22)nnnaaa−+−+=,12nnaa−=.数列{}na是等比数列,公比为2.11(2)n
naa−=.11101(2)1(1)2nnnablglgnlga−==+=−−,{}nb是等差数列,首项为1,公差为122lg−.(3)1(1)2nbnlg=−−,公差1202lg−.7132180blglg
=−=−,7872212022lgblg−=−=.当7n=,nT最大,nT的最大值为7(118)217222lglg+−=−.题型二:数列中的不等式问题5.设{}na和{}nb是两个等差数列,记
11{ncmaxban=−,22ban−,,}(1nnbann−=,2,3,),其中1{maxx,2x,,}sx表示1x,2x,,sx这s个数中最大的数.(1)若nan=,21nbn=−,求1c,2c,3c的值,并证明{}nc是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当nm…时,ncMn;或者存在正整数m,使得mc,1mc+,2mc+,是等差数列.【解答】解:(1)11a=,22a=,33a=,11b=,23b=,35
b=,当1n=时,111{}{0}0cmaxbamax=−==,当2n=时,211{2cmaxba=−,222}{1bamax−=−,1}1−=−,当3n=时,311{3cmaxba=−,223ba−,333}{2bamax−=−,3−,4}2−=−,下面证明:对*n
N,且2n…,都有11ncbna=−,当*nN,且2kn剟时,则11()()kkbnabna−−−,[(21)]1knkn=−−−+,(22)(1)knk=−−−,(1)(2)kn=−−,由10k−,且20n−„,则11
()()0kkbnabna−−−„,则11kkbnabna−−…,因此,对*nN,且2n…,111ncbnan=−=−,11nncc+−=−,211cc−=−,11nncc+−=−对*nN均成立,数列{}n
c是等差数列;(2)证明:方法一:设数列{}na和{}nb的公差分别为1d,2d,下面考虑的nc取值,由11ban−,22ban−,,nnban−,考虑其中任意iiban−,(*,1)iNin剟,则1211[(1)]
[(1)]iibanbidaidn−=+−−+−,1121()(1)()baniddn=−+−−,下面分10d=,10d,10d三种情况进行讨论,①若10d=,则112()(1)iibanbanid−=−+−,当若20d
„,则112()()(1)0iibanbanid−−−=−„,则对于给定的正整数n而言,11ncban=−,此时11nncca+−=−,数列{}nc是等差数列;当20d,2()()()0iinnbanbanind−−−=−
,则对于给定的正整数n而言,1nnnncbanban=−=−,此时121nnccda+−=−,数列{}nc是等差数列;此时取1m=,则1c,2c,,是等差数列,命题成立;②若10d,则此时12dnd−+为一个关于n的一次项系数为负数的一次函数,故必存在*mN,使得nm…时,1
20dnd−+,则当nm…时,1112()()(1)()0iibanbanidnd−−−=−−+„,(*,1)iNin剟,因此当nm…时,11ncban=−,此时11nncca+−=−,故数列{}nc从第m项开始为等差数列,命题成立;③若10d,此时12dnd−+为一个关于n的一次项系数
为正数的一次函数,故必存在*sN,使得ns…时,120dnd−+,则当ns…时,12()()(1)()0iinnbanbanidnd−−−=−−+„,(*,1)iNin剟,因此,当ns…时,nnncb
an=−,此时nnnnbanbann−==−+,122112()bddndadn−=−+−++,令10dA−=,112dadB−+=,12bdC−=,下面证明:ncCAnBnn=++对任意正整数M,存在正整数
m,使得nm…,ncMn,若0C…,取||[1]MBmA−=+,[]x表示不大于x的最大整数,当nm…时,||[1]ncMBMBAnBAmBABABMnAA−−++=+++=厖,此时命题成立;若0C,取||[]1MCBmA−−=+,当nm…时,||ncCMCBAnBAm
BCABCMCBBCMnnA−−++++++−−++=厖?,此时命题成立,因此对任意正数M,存在正整数m,使得当nm…时,ncMn;综合以上三种情况,命题得证.方法二:不妨设01naand=+,02nbbnd=+,其中nN,
考虑02010021()()()kxbkdakdnbanddnk=+−+=−+−,这关于k的等差数列,因此21110201{,}{,()}nncmaxccmaxbanbdandn==−+−−,考虑函数11(
)fxbax=−和函数20201()()gxbdaxdx=+−−,分类讨论如下:情形一:10d,此时()fx的图象是直线,()gx的图象是抛物线,无论直线与抛物线的位置关系如何,必然存在正整数0m,使得,0xm…,{()maxfx,()}()gxfx=或0xm…,{
()maxfx,()}()gxgx=,当0xm…,{()maxfx,()}()gxfx=时,取0mm=,有mc,1mc+,2mc+是等差数列;而当0xm…,{()maxfx,()}()gxgx=,必然有()gx开口向上,即10d−,因此0120()()bgxdxdaxx=−+
−,对任意正数M,必然存在正整数1m,使得当1xm…,有()gxMx,此时取0{mmaxm=,1}m,可得当nm…时,ncMn,情形10d=,此时()fx与()gx的图象都是直线,无论这两条直线位置关系如何,必然存在正整数m,使得0xm…,{()maxfx,()}()gxfx=或0xm…,
{()maxfx,()}()gxgx=,这就意味着mc,1mc+,2mc+是等差数列;综上所述,原命题得证.6.设nS为正项数列{}na的前n项和,满足222nnnSaa=+−.()I求{}na的通项公式;()
II若不等式2(1)4nanat++…对任意正整数n都成立,求实数t的取值范围;()III设3(1)4nalnnnbe+=(其中r是自然对数的底数),求证:1234266nnbbbbbb++++.【解
答】解:2()22nnnISaa=+−,211122nnnSaa−−−=+−.(2)n…,两式相减得22112nnnnnaaaaa−−=−+−,即22110nnnnaaaa−−−−−=,11()(1)0nnnnaaaa−−+−−=
得11nnaa−−=,(2)n…,又由211122Saa=+−,得12a=,1nan=+;2()(1)4nanIIat++…即为12(1)41nnt++++…,当1n=时,22(1)42t++…,得803t−剟且2t−,下面证明当803t−剟且2t−时,12(1)41nnt++
++…对任意正整数n都成立.当2n…时,10nt++,1122(1)(1)11nnntn+++++++…,又1n=时,上式显然成立.故只要证明12(1)41nn+++…对任意正整数n都成立即可.11221
1122111112222222(1)1()()()1()()1241111111nnnnnnnnnCCCCCnnnnnnn+++++++++=++++++=+++++++++厖,3(1)4()(1)nnIIIbn+=+,3(1)333144443(3)2122124(1)1(1)
1111[][][]2(3)(3)(3)(3)4(1)(3)1nnnnnnnbnnbnnnnnn++++++++====+++++++,2214(3)3nnbbnn+++„当2k…时,12222(1)112()(1)11(1)11kkkkkkkkkkkkkkkkkkkk−−==
==−+−+−−−+−−,1234221111112112162[()()()]2()24244634453333nnbbbbbbnnn++++−+−++−=−=+++7.设数列{}na的前n项和为nS,满足2*(0,)nnaSAnBnCAnN+=++
.(1)当1C=时,①设nnban=−,若132a=,294a=.求实数A,B的值,并判定数列{}nb是否为等比数列;②若数列{}na是等差数列,求1BA−的值;(2)当0C=时,若数列{}na是等差数列,11a=,且*nN,221
131111niiinaa=+−+++„,求实数的取值范围.【解答】解:(1)①由21nnaSAnBn+=++,分别令1n=,2代入上式得:121212421aABaaAB=+++=++,又132a=,294a=,解得1
232AB==.213122nnaSnn+=++,21113(1)(1)122nnaSnn+++=++++,两式作差得:122nnaan+−=+.则11(1)()2nnanan+−+=−.11102a−=,数列{}nan−是首项为1
2,公比为12的等比数列.nnban=−,数列{}nb是等比数列;②数列{}na是等差数列,设nadnc=+.则2()()222ndcdncnddSncn+++==++.23()22nnddaSncnc+=+++.2dA=,32dBc=+,1c=.则3111232dBdA+−−==;(2)
数列{}na为等差数列,221111(1)(1)()222nnnndddaSandnananadAnBnC−+=+−++=+++−=++,2dA=,12dBa=+,1Cad=−,1133()()022ddABCaad−+=−++−=,因此30ABC−+=.又0C=,{}na
是首项为1的等差数列,3BA=,则114ABA+=+=,得12A=,32B=,21dA==,则nan=.222222222211111(1)(1)11(1)(1)nnnnnnaannnn+++++++=++=++(1)1111(1)1nnnnnn++==+−++,2
2111111111(1)111nniiiinaaiin==+++=++=+−++.若*nN,221131111niiinaa=+−+++„,则31111nnn−+−++„,即211nn+++.当1n
=时,2(1)31minnn++=+,3.8.数列{}na满足11a=,其前n项和为nS,且1(2)nnnSnSn+=++,(1)求nS及数列{}na的通项公式;(2)设111nnnnnbaaaa++=+,记数
列{}nb的前n项和为nT,证明:12nT.【解答】解:(1)1(2)nnnSnSn+=++,12nnnaSn+=+,2n…时,1(1)2(1)nnnaSn−−=+−,相减可得:1(1)1nnnana+−+=,11111(1)1nnaannnnnn
+−==−+++.11112naannn=+−=−,解得21nan=−.(1n=时也成立).2(121)2nnnSn+−==.(2)证明:1111111()2(21)21(21)212121nnnnnbaaaannnnnn++===−+−+++−−+.数列{}nb的前n项和
为111111111(1)(1)222335212121nTnnn=−+−++−=−−++.12nT.9.已知数列{}na满足212(*)nnnaaanN++=,且12a=,416a=.(1)求数列{}na的通项公式;(2)若(21)nnbna=−,求数列{}nb的前n项和nS;(3
)设3nnnnaca=+,记数列{}nc的前n项和为nT,证明:2nT.【解答】解:(1)由212nnnaaa++=,得211nnnnaaaa+++=,所以{}na是等比数列,设{}na的公比为q,由12a=,416a=,得3411682aqa===,解得2q=,所以1222nnna−==.
(2)由(1)可知(21)2nnbn=−,所以12121232(21)2nnnSbbbn=+++=+++−①,所以23121232(21)2nnSn+=+++−②;②−①得:23122(222)(21)2nnn
Sn+=−−++++−,即21131112(12)22(21)223(12)(21)26(23)212nnnnnnSnnn−+−++−=−−+−=−+−+−=+−−.(3)证明:由nN+,得20n,则323nnn+,所以22()323nnnnnc=+,所
以231222[1()]2222233()()()()22()223333313nnnnnTccc−=+++++++==−−.10.已知数列{}na满足2*12()nnnaaanN++=,且12a=,416a=.(1)求数列
{}na的通项公式;(2)若(21)nnbna=−,求数列{}nb的前n项和nS;(3)设3nnnnaca=+,记数列{}nc的前n项和为nT,证明:86182()265133nnT−„.【解答】解:(1)212nnnaaa++=,211nnnnaaaa+++=,{}na为等比数列,设公
比为q,12a=,416a=,3418aqa==,2q=,2nna=.(2)(21)(21)2nnnbnan=−=−,23123123252(21)2nnnSbbbbn=++++=++++−①,23412123252(23)2(
21)2nnnSnn+=++++−+−②,②−①得:1231131114(12)22(222)(21)222(21)222(12)(21)26(23)212nnnnnnnnSnnnn−++−++−=−−++++−=−−
+−=−+−+−=+−−.(3)①先证右边:*nN,20n,323nnn+,22()323nnnnnc=+.2341222[1()]22222233()()()()22()2233333313nnn
nnTccc−=++++++++==−−.②再证左边:当1n=时,1861822651335T=−=,成立.当2n…时,设213332()1()22nnnnnnc==++…恒成立,则121()3n+„,913„,92()133nnc….当2n…时,212311222()
[1()]292222921222121828618233[()()()][1()]()()251333351351335131336513313nnnnnnnTccc−−−=+++++++=+=+−=+−=−−….86182()265133nnT−„.11.已知数列{}na
的前n项和为nS,且满足12a=,1(1)nnnaSnn+=++.(1)求数列{}na的通项公式;(2)设nT为数列{}2nna的前n项和,求nT;(3)设21nnnbaa+=,证明:123131216nbbbb++++
„.【解答】解:(1)数列{}na的前n项和为nS,且满足12a=,1(1)nnnaSnn+=++①,当2n…时,1(1)(1)nnnaSnn−−=+−②,①−②得:12nnaa+−=(常数),当1n=时,24a=,所以数列{}na是以2为首项,2为公差的等差数列;
所以2nan=.(2)设1222nnnnnc−==,所以01112...222nnnT−=+++①,12112...2222nnnT=+++②,①−②得:211111(1)22222nnnnT−=+++−,
整理得:4242nnnT+=−.证明:(3)由(1)得211111()2(24)4224nnnbaannnn+===−++,所以11111111111111113(...)()426486102222224424222416nSnnnnnn=−+−+−++−+−=
+−−−++++.由于10nnbb+−,所以数列{}nb单调递增,所以11111()42612b=−=,故:123131216nbbbb++++„.12.已知数列{}na的前n项和nS满足132
10nnaS++−=,且113a=.(Ⅰ)求数列{}na的通项公式;(Ⅱ)设113nnnbS=+,证明:1231712nbbbbn+++++.【解答】(本小题满分12分)解:(Ⅰ)由112211113210,393nnaSaaaa++−===
=;−−−−−−−−−−−−−−−−−−(1分)当2n…时,111321033220nnnnnnaSaaSS−+−+−=−+−=−−−−−−−−−−−(2分)113nnaa+=,(2)n…,−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−(3分)又2113aa=,数列{}na是以13为首项,13为公比的等比数列,13nna=.−−−−−−−−−−−−−(4分)证明:(Ⅱ)由(Ⅰ)可得112(1)12331nnnnSb=−=+−−−−−−−−−−−−−−−−−−−−−−−−−(5
分)12323222231313131nnbbbbn++++=+++++−−−−欲证1231712nbbbbn+++++,只需证232222173131313112n++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(7分)令231nnc
=−,记{}nc的前n项和为nT,即证1217171171,11212412nTTT==+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(8分)当3n…时,12211313113nnn−+=−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−+(10分)当3n…时,223111(1)11115513179311433344921213nnnT−−−+++++=++=−−−−−−−−−−−−−−−
−−−(12分)综上,1231712nbbbbn+++++对*nN成立.13.数列{}na满足11a=,21()(1nnannan+=+−=,2,),是常数.(Ⅰ)当21a=−时,求及3a的值;(Ⅱ)数列{}na是
否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求的取值范围,使得存在正整数m,当nm时总有0na.【解答】解:(Ⅰ)由于21()(1nnannan+=+−=,2,),且11a=.所以当21a=−时,得12−=−,故3=.从
而23(223)(1)3a=+−−=−.(Ⅱ)数列{}na不可能为等差数列,证明如下:由11a=,21()nnanna+=+−得22a=−,3(6)(2)a=−−,4(12)(6)(2)a=−−−.若存在
,使{}na为等差数列,则3221aaaa−=−,即(5)(2)1−−=−,解得3=.于是2112aa−=−=−,43(11)(6)(2)24aa−=−−−=−.这与{}na为等差数列矛盾.所以,对任意,{}na都不可能是等差数列.(Ⅲ)记2(1
nbnnn=+−=,2,),根据题意可知,10b且0nb,即2且2*()nnnN+,这时总存在*0nN,满足:当0nn…时,0nb;当01nn−„时,0nb.所以由1nnnaba+=及110a=可知,若0n为偶数,则00na,从而当0nn时,0na;若0n为奇数
,则00na,从而当0nn时0na.因此“存在*mN,当nm时总有0na”的充分必要条件是:0n为偶数,记02(1nkk==,2,),则满足22221(2)20(21)210kkbkkbkk−=+−=−+−−.故的取值范
围是22*4242()kkkkkN−+.14.设数列1:Aa,2a,,(2)NaN….如果对小于(2)nnN剟的每个正整数k都有knaa,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合.(Ⅰ)对数列:2A−,2,1−,1,3
,写出G(A)的所有元素;(Ⅱ)证明:若数列A中存在na使得1naa,则G(A);(Ⅲ)证明:若数列A满足11(2nnaan−−=„,3,,)N,则G(A)的元素个数不小于1Naa−.【解答】解:(Ⅰ)根据题
干可得,12a=−,22a=,31a=−,41a=,53a=,12aa满足条件,2满足条件,23aa不满足条件,3不满足条件,24aa不满足条件,4不满足条件,1a,2a,3a,4a,均小于5a,
因此5满足条件,因此G(A){2=,5}.(Ⅱ)因为存在1naa,设数列A中第一个大于1a的项为ka,则1kiaaa…,其中21ik−剟,所以kG(A),G(A);(Ⅲ)设A数列的所有“G时
刻”为12kiii,对于第一个“G时刻”1i,有11(2iiaaai=…,3,,11)i−,则111111iiiaaaa−−−剟.对于第二个“G时刻”1i,有21(2iiiaaai=…,3,,11)i−,则212211i
iiiaaaa−−−剟.类似的321iiaa−„,,11kkiiaa−−„.于是,11221111()()()()kkkkkiiiiiiiikaaaaaaaaaa−−−−+−++−+−=−….对于Na
,若NG(A),则kiNaa=.若NG(A),则kNiaa„,否则由(2)知kia,1kia+,,Na,中存在“G时刻”与只有k个“G时刻”矛盾.从而11kiNkaaaa−−厖.另解:(Ⅲ)①若G(A)=,由(2)可知,1Naa„,此
时结论成立;②若G(A),设G(A)1{i=,2i,,}ki,其中{2ji,3,,}N,1j=,2,,k,不妨设12kiii,由题意1111iiaaa−…,所以111111iiiaaaa−
−−剟,同理2121iiiaaa−…,所以212211iiiiaaaa−−−剟.以此类推,我们有111111iiiaaaa−−−剟,212211iiiiaaaa−−−剟,111kkkkiiiiaaaa−−−−剟,将以上各式累加,得到11kNiaa
aak−−剟,故此时结论也成立.综合①②可知,若数列A满足11(2nnaan−−=„,3,,)N,则G(A)的元素个数不小于1Naa−.15.已知函数311223()log,(,),(,)1xfxMxyNxyx
=−是()fx图象点的两点,横坐标为12的点P是M,N的中点.(1)求证:12yy+的定值;(2)若121()()()(*,2)nnSfffnNnnnn−=+++…,11,16(*)1,24(1)(1)nnnnanNnSS+==++…,nT为数列{}na前
n项和,当1(1)nnTmS++对一切*nN都成立时,试求实数m的取值范围.(3)在(2)的条件下,设1214(1)(1)1nnnbSS++=+++,nB为数列{}nb前n项和,证明:1752nB.【解答】解:(1)由已知得,121x
x+=121212333121233331111xxxxyylogloglogxxxx+=+=−−−−1231212311()xxlogxxxx==−++(2)由(1)知当121xx+=时,1212()()1yyfxfx+=+=121()()()nnSfffnnn−=+++①121
()()()nnnSfffnnn−−=+++②①+②得12nnS−=,当2n…时,1111212422nannnn==−++++又当1n=时,116a=也适合上式,故1112nann=−++故111111()()()2334
122(2)nnTnnn=−+−++−=+++1(1)nnTmS++对一切*nN都成立即211(2)nnTnmSn+=++恒成立,又2114(2)84nnnn=+++„,所以实数m的取值范围为:1(8,)+(3)因为121,22nnnnSS+++==,所以1211114(1)
(1)1(2)(3)123nnnbSSnnnn++==−++++++++故1111111()()()455623nBbnn=+−+−++−++11117134352n=+−+声明:试题解析著作权属所有,未经书面同意,不得复制发布日期:2022/2/149:04:04;用户:1831
6341968;邮箱:18316341968;学号:32362679