2021-2022学年高中数学人教版必修2教案:3.1.1直线的倾斜角与斜率 3 含解析【高考】

DOC
  • 阅读 3 次
  • 下载 0 次
  • 页数 5 页
  • 大小 357.500 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高中数学人教版必修2教案:3.1.1直线的倾斜角与斜率 3 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高中数学人教版必修2教案:3.1.1直线的倾斜角与斜率 3 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高中数学人教版必修2教案:3.1.1直线的倾斜角与斜率 3 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的2 已有3人购买 付费阅读2.40 元
/ 5
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高中数学人教版必修2教案:3.1.1直线的倾斜角与斜率 3 含解析【高考】.doc,共(5)页,357.500 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-64ae551628e46a7b8d42bcc108a4bf10.html

以下为本文档部分文字说明:

-1-3.1.1倾斜角与斜率(一)教学目标1.知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线倾斜角的唯一性.(3)理解直线斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.2.过程与方法引导帮助学生将直线的位置问题(几何问题)转化为倾斜角问题

,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生不断体会“数形结合”的思想方法.3.情感、态度与价值观(1)通过直线倾斜角的概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜

率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.(二)教学重点与难点直线的倾斜角、斜率的概念和公式.(三)教学方法教学环节教学内容师生互动设计意图提出问题

引入我们知道,经过两点有且只有(确定)一条直线,那么,经过一点P的直线l的位置能确定吗?如图,过一点P可作无数多条直线a,b,c,…易见,答案是否定的,这些直线有什么联系呢?直线的倾斜角的概念.学生回答(不能确定

)(1)它们都经过点P.(2)它们的倾斜程度不同.接着教师提出:怎样描述这种倾斜程度的不同?由此引入课题.设疑激趣导入课题概念形成1.直线倾斜角的概念当直线l与x轴相交时,取教师提问:倾斜角的取值范围是什-2-x轴作为基准,x轴正向与直线l向上方向之间所成的角

叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定0=.么?0180当直线l与x轴重合时90=(由学生结合图形回答)概念深化因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后,我们就可以用倾斜角来表示平面直角坐标系内的每一条直线的倾斜程度.确定平面

直角坐标系内的一条直线位置的几何要素:一个点P和一个倾斜角.教师提问:如左图,直线a∥b∥c,那么它们的倾斜角相等吗?学生回答后作出结论.一个倾斜角不能确定一条直线,进而得出.确定一条直线位置的几何要素.通过这种师

生互动引导学生明确确定一条直线位置的两个几何要素概念形成2.直线的斜率一条直线的倾斜角(≠90°)的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即tank=.由此可知,一条直线l的倾斜角一定存在,但是斜率

k不一定存在.例如=45°时k=tan45°=1=135°时k=tan135°=–1教师提问:(由学生讨论后回答)(1)当直线l与x轴平行或重合时,k为多少?k=tan0°=0(2)当直线l与x轴垂直时,k

还存在吗?=90°,k不存在设疑激发学生思考得出结论概念形成3.直线的斜率公式教师提出问题:借助多媒yabcxO-3-2121yykxx−=−对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角

=90°,直线与x轴垂直;(2)k与P1、P2的顺序无关,即y1、y2和x1、x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当y1=y2时,斜率k=0,直线的倾斜角=

0°,直线与x轴平行或重合.(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1、P2的斜率?可用计算机作动画演示:直线P1P2的四

种情况,并引导学生如何作辅助线,共同完成斜率公式的推导.体演示让学生亲自体会斜率公式的推导过程.应用举例例1已知A(3,2),B(–4,1),C(0,–1),求直线AB,BC,CA的斜率,并判断它们的倾斜角是钝角还是锐角.(用计算机作直线,图略)分析:已知两点坐标,而且x1≠x2

,由斜率公式代入即可求得k的值;而当tan0k=时,倾斜学生分析求解,教师板书例1略解:直线AB的斜率k1=1/7>0,所以它的倾斜角是锐角.直线BC的斜率k2=–0.5<0,所以它的倾斜角是锐角.通过应用进一步理解倾

斜角,斜率的有关定义-4-角是钝角;而当tan0k=时,倾斜角是锐角;而当tan0k==时,倾斜角是0°.例2在平面直角坐标系中,画出经过原点且斜率分别为1,–1,2及–3的直线a,b,c,1.分析:要画出经过原

点的直线a,只要再找出a上的另个一点M.而M的坐标可以根据直线a的斜率确定;或者k=tan=1是特殊值,所以也可以以原点为角的顶点,x轴的正半轴为角的一边,在x轴的上方作45°的角,再把所作的这一边反向延长成直线即可.例2略解:设直线a上的另个一点M的坐标为(x,y),

根据斜率公式有1=(y–0)/(x–0)所以x=y可令x=1,则y=1,于是点M的坐标为(1,1).此时过原点和点M(1,1),可作直线a.同理,可作直线b,c,1.(用计算机作动画演示画直线过程)课堂练习:P911题、2题、3题、4题.归纳总结(1)直线的倾斜角和斜率

的概念.(2)直线的斜率公式.师生共同总结——交流——完善引导学生学会自己总结课后作业布置作业见习案3.1第一课时由学生独立完成巩固深化备选例题例1求下列两点直线的斜率,并判断其倾斜角是锐角还是钝角.(1)(1,1),(2,4);(2)(–3,5),(0,2);

(3)(2,3),(2,5);(4)(3,–2),(6,–2)【解析】(1)413021k−==−,所以倾斜角是锐角;(2)25100(3)k−==−−−,所以倾斜角是钝角;-5-(3)由x1=x2=2得:k不存在,倾斜角是90°(4)2(2)063k−

−−==−,所以倾斜角为0°例2已知点P(3,1)−点Q在y轴上,直线PQ的倾斜角为120°,则Q点的坐标为.【解析】因为点Q在y轴上,则可设其坐标为(0,6)直线PQ的斜率k=tan120°=3−∴130(3)bk−==−−−∴b=

–2,即Q点坐标为(0,2)−

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?