【文档说明】湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题 Word版含解析.docx,共(15)页,1.138 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-5ae9b0b9ed35a3de99299b95138b9288.html
以下为本文档部分文字说明:
雅礼中学2025届高三月考试卷(三)数学命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题
“存在xZ,220xxm++„”的否定是A.存在xZ,220xxm++B.不存在xZ,220xxm++C.任意xZ,220xxm++„D.任意xZ,220xxm++2.若集合2341,i,i,iA=(i是虚数单位),1,1
B=−,则AB等于A.1−B.1C.1,1−D.3.已知奇函数()()22cosxxfxmx−=+,则m=A.-1B.0C.1D.124.已知m,l是两条不同的直线,,是两个不同的平面,则下列可以推出⊥的是A.ml⊥,m,l⊥B.ml⊥,l
=,mC.ml,m⊥,l⊥D.l⊥,ml,m5.已知函数()()4cos(0)fxx=+图象的一个最高点与相邻的对称中心之间的距离为5,则6f−=A.0B.2C.4D.26.已知M是圆22:1Cxy+=上一个动点,且直线1:30lmxnymn
−−+=与直线2:30lnxmymn+−−=(m,nR,220mn+)相交于点P,则PM的取值范围为A.31,231−+B.21,321−+C.21,221−+D.21,331−+7.P是椭圆2222:1(0)xyCabab+=上一点,1F,2F是C
的两个焦点,120PFPF=,点Q在12FPF的角平分线上,O为原点,1OQPF,且OQb=.则C的离心率为A.12B.33C.63D.328.设集合()12345,,,,|1,0,1,1,2,3,4,5
iAxxxxxxi−=,那么集合A中满足条件“1234513xxxxx++++剟”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,
部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年
产量的方差小于后5年粮食年产量的方差10.已知函数()fx满足()()22fxfx+=−,()()0fxfx++−=,并且当()0,x时,()cosfxx=,则下列关于函数()fx说法正确的是A.302f=B.最小
正周期2T=C.()fx的图象关于直线x=对称D.()fx的图象关于(),0−对称11.若双曲线22:145xyC−=,1F,2F分别为左、右焦点,设点P是在双曲线上且在第一象限的动点,点I为12PFF△的内心,()0,4A,则下列说法不正确的是A.双曲线C的渐近线方程为045xy=B.
点I的运动轨迹为双曲线的一部分C.若122PFPF=,12PIxPFyPF=+,则29yx−=D.不存在点P,使得1PAPF+取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.523xx+
的展开式中4x的系数为________.13.ABC△各角的对应边分别为a,b,c,满足1bcacab+++…,则角A的取值范围为________.14.对任意的*nN,不等式11e1nannn++„(
其中e是自然对数的底)恒成立,则a的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设nS为正项等比数
列na的前n项和,21332Saa=+,416a=.(1)求数列na的通项公式;(2)数列nb满足11b=,1222loglognnnnbaba++=,求数列nb的前n项和nT.16.
(本小题满分15分)如图,在四棱锥PABCD−,BCAD,1ABBC==,3AD=,点E在AD上,且PEAD⊥,2DEPE==.(1)若F为线段PE的中点,求证:BF平面PCD;(2)若AB⊥平面PAD,求平面PAB与平面PCD所成夹
角的余弦值.17.(本小题满分15分)已知函数()21ln2fxxxax=+−有两个极值点为1x,()212xxx,aR.(1)当52a=时,求()()21fxfx−的值;(2)若21exx…(e为自然对数的底数),求()()21fxfx−的最大值.18.(本小题满分17分)已知抛
物线2:2(0)Expyp=的焦点为F,H为E上任意一点,且HF的最小值为1.(1)求抛物线E的方程;(2)已知P为平面上一动点,且过P能向E作两条切线,切点为M,N,记直线PM,PN,PF的斜率分别为1k,2k,3k,且满足123
112kkk+=.①求点P的轨迹方程;②试探究:是否存在一个圆心为()0,(0)Q,半径为1的圆,使得过P可以作圆Q的两条切线1l,2l,切线1l,2l分别交抛物线E于不同的两点()11,Ast,()2
2,Bst和点()33,Cst,()44,Dst,且1234ssss为定值?若存在,求圆Q的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量1a,2a,3a,…,na(Nn且3n…),令123nnSaaaa=++++,如果存在()1,2,3,,papn,使得
pnpaSa−…,那么称pa是该向量组的“长向量”.(1)设(),2nanxn=+,nN且0n,若3a是向量组1a,2a,3a的“长向量”,求实数x的取值范围;(2)若sin,cos22nnna=,nN且0n,向量组1a,2a,3a,…,7a
是否存在“长向量”?给出你的结论并说明理由;(3)已知1a,2a,3a均是向量组1a,2a,3a的“长向量”,其中()1sin,cosaxx=,()22cos,2sinaxx=.设在平面直角坐标系中有一点列1P,2P,3P,…,nP,满足1P为
坐标原点,2P为3a的位置向量的终点,且21kP+与2kP关于点1P对称,22kP+与21kP+(kN且0k)关于点2P对称,求10151016PP的最小值.参考答案一、二、选择题题号1234567891011答案D
CADCBCDACDADABD1.D2.C【解析】集合i,1,1,iA=−−,1,1B=−,1,1AB=−.故选C.3.A【解析】()fx是奇函数,()()22cosxxfxmx−=+,()()()2222xxxxfxfxm−−+−=+++cos0x=,(
)()122cos0xxmx−++=,10m+=,1m=−.故选A.4.D【解析】有可能出现,平行这种情况,故A错误;会出现平面,相交但不垂直的情况,故B错误;ml,m⊥,l⊥,故C错误;l⊥,mlm⊥,又由m⊥,故
D正确.故选D.5.C【解析】设()fx的最小正周期为T,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有224254T+=,得12T=,则有212=,解得6=,所以()4cos6fxx
=+,所以664cos4cos046f−=−+==.故选C.6.B【解析】依题意,直线()()1:310lmxny−−−=恒过定点()3,1A,直线()()2:130lnxmy−+
−=恒过定点()1,3B,显然直线12ll⊥,因此,直线1l与2l交点P的轨迹是以线段AB为直径的圆,其方程为:22(2)(2)2xy−+−=,圆心()2,2N,半径22r=,而圆C的圆心()0,0C,半径11r=,如
图:1222NCrr=+,两圆外离,由圆的几何性质得:12min21PMNCrr=−−=−,12max321PMNCrr=++=+,所以PM的取值范围为21,321−+.故选B.7.C【解析】如图,设1PFm=,2PFn=,延长OQ交2PF于
点A,由题意知1OQPF,O为12FF的中点,故A为2PF中点,又120PFPF=,即12PFPF⊥,则2QAP=,又由点Q在12FPF的角平分线上得4QPA=,则AQP△是等腰直角三角形,故有2222,4,11,22mna
mncbnm+=+=+=化简得2,2,mnbmna−=+=即,,mabnab=+=−代入2224mnc+=得222()()4ababc++−=,即2222abc+=,又222bac=−
,所以2223ac=,所以223e=,63e=.故选C.8.D【解析】因为0ix=或1ix=,所以若1234513xxxxx++++剟,则在()1,2,3,4,5ixi=中至少有一个1ix=,且不多于3个.所以可根据ix中含0的个数进行
分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为2315C2N=,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为3225C2N=,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为435C2N=,所以共有23324555C2C2C2130N=++
=种.故选D.9.ACD【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为422616−=,故A正确;1070%7=,结合A选项可知第70百分位数为第7个数和第8个数的平均数,即353836.52+=,故B不正确;这10年粮食年
产量的平均数为()13232302835384239263533.710+++++++++=,故C正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量
的方差,故D正确.故选ACD.10.AD【解析】由于()0,x时,()cosfxx=,并且满足()()22fxfx+=−,则函数()fx的图象关于直线2x=对称.由于()()0fxfx++−=
,所以()()fxfx+=−−,故()()()()()22fxfxfxfx−−+=+=−−=−,故()()()24fxfxfx=−+=+,故函数的最小正周期为4,根据()()0fxfx++−=,知函数()fx的图象关于(),0对称.由于()0,x时,()cosfx
x=,3cos022222ffff=+=−−=−=−=,故A正确,由于函数的最小正周期为4,故B错误;由函数()fx的图象关于(),0对称,易知()fx的图
象不关于直线x=对称,故C错误;根据函数图象关于点(),0对称,且函数图象关于直线2x=对称,知函数图象关于点()3,0对称,又函数的最小正周期为4,则函数图象一定关于点(),0−对称,故D正
确.故选AD.11.ABD【解析】双曲线22:145xyC−=,可知其渐近线方程为025xy=,A错误;设1PFm=,2PFn=,12PFF△的内切圆与1PF,2PF,12FF分别切于点S,K,T,可得PSPK=,11FS
FT=,22FTFK=,由双曲线的定义可得:2mna−=,即12122FSFKFTFTa−=−=,又122FTFTc+=,解得2FTca=−,则点T的横坐标为a,由点I与点T的横坐标相同,即点I的横坐标为2a=,故I在
定直线2x=上运动,B错误;由122PFPF=,且1224PFPFa−==,解得18PF=,24PF=,1226FFc==,126436167cos2868PFF+−==,则212715sin188PFF
=−=,1215tan7PFF=,同理可得:21tan15PFF=−,设直线()115:37PFyx=+,直线()2:153PFyx=−,联立方程得()4,15P,设12PFF△的内切圆的半
径为r,则()12115186846282PFFSr==++△,解得153r=,即152,3I,2152,3PI=−−,()17,15PF=−−,()21,15
PF=−−,由12PIxPFyPF=+,可得27,2151515,3xyxy−=−−−=−−解得29x=,49y=,故29yx−=,C正确;1224PFPFa−==,12244PAPFPAPFAF+=+++…,当且仅当A,P,2F
三点共线取等号,易知()1min549PAPF+=+=,故存在P使得1PAPF+取最小值,D错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90【解析】523xx+展开式的通项公式为()()521031553CC3rr
rrrrrTxxx−−+==,令1034r−=,解得2r=,所以展开式中4x的系数为225C310990==.13.0,3【解析】从所给条件入手,进行不等式化简()()1bcbabcacacab++++++厖()()222ac
abbcabc++++…,观察到余弦定理公式特征,进而利用余弦定理表示cosA,由222bcaac+−…可得2221cos22bcaAbc+−=…,可得0,3A.14.11ln2−【解析】对任意的*nN,不等式11e1nann
n++„(其中e是自然对数的底)恒成立,只需11enan++„恒成立,只需()1ln11nan++„恒成立,只需11ln1ann−+„恒成立,构造()()11ln1mxxx=−+,(0,1x,()()(
)()()22221ln11ln1xxxmxxxx++−=++,(0,1x.下证()(22ln1,0,11xxxx++,再构造函数()()22ln11xhxxx=+−+,(0,1x,()()()2221ln12(1)xxxxhxx++−
−=+,(0,1x,设()()()221ln12Fxxxxx=++−−,()()2ln12Fxxx=+−,(0,1x,令()()2ln12Gxxx=+−,(0,1x,()21xGxx=−+,(0,
1x,在(0,1x时,()0Gx,()Gx单调递减,()()00GxG=,即()0Fx,所以()Fx递减,()()00FxF=,即()0hx,所以()hx递减,并且()00h=,所以有()22ln11xxx++,(0,1x,所以()0mx,所以()mx在(0,
1x上递减,所以()mx的最小值为()111ln2m=−.11ln2a−„,即a的最大值为11ln2−.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为na是正项等比数列,所
以10a,公比0q,因为21332Saa=+,所以()121332aaaa+=+,即21112320aqaqa−−=,则22320qq−−=,解得12q=−(舍去)或2q=,···················
··································(3分)又因为3411816aaqa===,所以12a=,所以数列na的通项公式为2nna=.···················································
··························(6分)(2)依题意得1222222loglog2loglog22nnnnnnbanban+++===+,·······················································(7分)当2n…
时,()324123112311234511nnbbbbnbbbbnnn−−==++,所以()121nbbnn=+,因为11b=,所以()21nbnn=+,当1n=时,1nb=符合上式,所以数列nb的通项公式为()21nbnn=+.······················
·····(10分)因为()211211nbnnnn==−++,所以1111112212221223111nnTnnnn=−+−++−=−=+++.·························(13分)16.【解析】(1
)设M为PD的中点,连接FM,CM,因为F是PE中点,所以FMED,且12FMED=,因为ADBC,1ABBC==,3AD=,2DEPE==,所以四边形ABCE为平行四边形,BCED,且12BCED=,所以FMBC,且FMBC=,即四边形BCMF为平行四边形,所以BFCM,因为BF平面
,PCDCM平面PCD,所以BF平面PCD.···············(6分)(2)因为AB⊥平面PAD,所以CE⊥平面PAD,又PEAD⊥,所以EP,ED,EC相互垂直,·····························
·································································································(7分)以E为坐标原点,建立如图所示的空间直角坐标系,则()0,0,2P,()0,1,0A−,
()1,1,0B−,()1,0,0C,()0,2,0D,所以()1,0,0AB=,()0,1,2AP=,()1,0,2PC=−,()1,2,0CD=−,····························(9分)设平面PAB的一个法向量为()111,,mx
yz=,则1110,20,mABxmAPyz===+=取11z=−,则()0,2,1m=−,················································(11分)设平面PCD的一个法向量为()222,,nx
yz=,则222220,20,nPCxznCDxy=−==−+=取21z=,则()2,1,1n=,··················································(13分)设平面PAB与平面PCD所成夹角为,则21130
cos305630mnmn−====.·······(15分)17.【解析】(1)函数()21ln2fxxxax=+−的定义域为()0,+,则()211xaxfxxaxx−+=+−=,当52a=时,可得,()()2152122xxxxfxxx−−−+==,········
···································(2分)当10,2x或()2,x+时,()0fx;当1,22x时,()0fx;所以()fx在区间10,2
,()2,+上单调递增,在区间1,22上单调递减;······················(4分)所以12x=和2x=是函数()fx的两个极值点,又12xx,所以112x=,22x=;所以()()()211115152ln225ln
2ln222848fxfxff−=−=+−−+−=−,即当52a=时,()()21152ln28fxfx−=−.··············································
·····················(6分)(2)易知()()()()22221212111ln2xfxfxxxaxxx−=+−−−,又()21xaxfxx−+=,所以1x,2x是方程210xax−+=的两个实数根,则2Δ40a=−且120xxa+=,121xx
=,所以2a,············································(9分)所以()()()()()()()2222222121212112211111lnln22xxfxfxxxaxxxxxxxxxx−=+−−
−=+−−+−()()222222221212111121121111lnlnln222xxxxxxxxxxxxxxxx=−−=−−=−−,···························(11分)设21xtx=
,由21exx…,可得21extx=…,令()11ln2gtttt=−−,et…,·························(13分)则()222111(1)1022tgtttt−=−+=−,所以()gt在区间)e,+
上单调递减,得()()11e1e1e12e22egtg=−−=−+„,故()()21fxfx−的最大值为e1122e−+.·········(15分)18.【解析】(1)设抛物线E的准线l为2py=−,过点H作1HH⊥直线l于点1H,由抛物线的定义得1HFHH=,所以当点H与原点
O重合时,1min12pHH==,所以2p=,所以抛物线E的方程为24xy=.······························································
····················(4分)(2)①设(),Pmn,过点P且斜率存在的直线():lykxmn=−+,联立()24,,xyykxmn==−+消去y,整理得:24440xkxkmn−+−=,由题可知()2Δ164440kkmn=−−=,即2
0kmkn−+=,所以1k,2k是该方程的两个不等实根,由韦达定理可得1212,,kkmkkn+==·································(6分)又因为()0,1F,所以31nkm−=,0m,由123112kkk
+=,有121232kkkkk+=,所以21mmnn=−,因为0m,12nn−=,1n=−,所以点P的轨迹方程为()10yx=−.②由①知(),1Pm−,设()14:1lykxm=−−,()25:1lykxm=−−,1m且0m,······(9分)
联立()244,1,xyykxm==−−消去y,整理得2444440xkxkm−++=,又()11,Ast,()22,Bst,()33,Cst,()44,Dst,由韦达定理可得12444sskm=+,同理可得34544sskm=+,所以()()()2123445154
54444161616sssskmkmkkmmkk=++=+++,·····························(11分)又因为1l和以圆心为()0,(0)Q,半径为1的圆相切,所以()4240111kmk−−−=+,即()()222
4412120mkmk−++++=.同理()()2225512120mkmk−++++=,所以4k,5k是方程()()22212120mkmk−++++=的两个不等实根,所以由韦达定理可得()452245221,12,1mkkmkkm++=
−−+=−·······························································(14分)所以()()()22222123445452216161616162221
621611mmsssskkmmkkmm=+++=+−−+=−+−−,若1234ssss为定值,则220−=,又因为0,所以2=,····································(16分)所以圆Q的方程为22(2
)1xy+−=.·········································································(17分)19.【解析】(1)由题意可得:312aaa+…,则229(6)9
(26)xx++++…,解得40x−剟.·····················································································································
···············(3分)(2)存在“长向量”,且“长向量”为2a,6a,···························································(5分)理由如下:由
题意可得22sincos122nnna=+=,若存在“长向量”pa,只需使1npSa−„,又()()712371010101,01010100,1Saaaa=++++=+−+++−−+++−+=−,故只需使22227sincos1sincos2cos122cos1222222ppppp
ppSa−=++=+++=+„,即022cos12p+剟,即11cos22p−−剟,当2p=或6时,符合要求,故存在“长向量”,且“长向量”为2a,6a.···························(8分)(3)由题意,
得123aaa+…,22123aaa+…,即()22123aaa+…,即222123232aaaaa++…,同理222213132aaaaa++…,222312122aaaaa++…,·····
··············(10分)三式相加并化简,得2221231213230222aaaaaaaaa+++++…,即()21230aaa++„,1230aaa++„,所以1230aaa++=,设()3,auv=,
由1220aaa++=得sin2cos,cos2sin,uxxvxx=−−=−−················································(12分)设(),nnnPxy,则依题意得:()()()()()()212111222222222
121,2,,,,2,,,kkkkkkkkxyxyxyxyxyxy++++++=−=−···························(13分)得()()()()2222221122,2,,,kkk
kxyxyxyxy++=−+,故()()()()2222221122,2,,,kkxykxyxyxy++=−+,()()()()2121221122,2,,,kkxykxyxyxy++=−−+,所以()()()212222212221221112,4,
,4kkkkkkPPxxyykxyxykPP++++++=−−=−=,22212(sin2cos)(cos2sin)58sincos54sin21PPxxxxxxx=−−+−−=+=+…,当且仅当()4xtt=−Z时等号成立,························
············································(16分)故10151016min1014420282PP==.······················································
·······················(17分)