【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第63讲 变量间的相关关系、统计案例(讲)(原卷版).docx,共(10)页,184.555 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-4d35ebb1c5cd0ad6c3d91293d3e93655.html
以下为本文档部分文字说明:
第63讲变量间的相关关系、统计案例思维导图知识梳理1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上
角到右下角的区域内,两个变量的这种相关关系为负相关.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)
回归方程为y^=b^x+a^,其中b^=i=1n(xi-x)(yi-y)i=1n(xi-x)2=i=1nxiyi-nxyi=1nx2i-nx2,a^=y-b^x.(3)通过求Q=i=1n(yi-bxi-a)2的
最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.(4)相关系数:当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通
常|r|大于0.75时,认为两个变量有很强的线性相关性.3.独立性检验(1)2×2列联表设X,Y为两个变量,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(2×2列联表)如下:y1y2总计x1aba
+bx2cdc+d总计a+cb+da+b+c+d(2)独立性检验利用随机变量K2(也可表示为χ2)的观测值k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d为样本容量)来判断“两个变量有关系”的方法称为独立
性检验.题型归纳题型1相关关系的判断【例1-1】对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u
与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关【例1-2】(2019·郑州市第一次质量预测)某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:月份123456人均销售额658347利润率(%)12.610.418.53.08.116.3根据表中数据
,下列说法正确的是()A.利润率与人均销售额成正相关关系B.利润率与人均销售额成负相关关系C.利润率与人均销售额成正比例函数关系D.利润率与人均销售额成反比例函数关系【跟踪训练1-1】已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z
负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关【跟踪训练1-2】在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i
=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为()A.-1B.0C.12D.1【跟踪训练1-3】变量X与Y相应的一组数据为(10,1),(11.3,2),(11.8,3),
(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0B.0<r2<
r1C.r2<0<r1D.r2=r1【名师指导】判断相关关系的2种方法(1)散点图法:如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.(2)相关系
数法:利用相关系数判定,当|r|越趋近于1相关性越强.题型2回归分析【例2-1】(2019·四省八校双教研联考)越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表:周数x654321正常值y556372
809099(1)作出散点图;(2)根据上表数据用最小二乘法求出y关于x的线性回归方程y^=b^x+a^(精确到0.01);(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及其以上为重度焦虑,若为中度焦虑及其以上,
则要进行心理疏导,若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?其中b^=i=1nxiyi-nxyi=1nx2i-nx2,i=16xiyi=1452,i=16x2i=91,a^=y-b^x.【例2-2】(2
019·合肥市第二次质量检测)为了了解A地区足球特色学校的发展状况,某调查机构统计得到如下数据:年份x20142015201620172018足球特色学校数y/百个0.300.601.001.401.70(1)根据表中数据
,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|≤0.25,则认为y与x线性
相关性较弱);(2)求y关于x的线性回归方程,并预测A地区2019年足球特色学校的个数(精确到个).参考公式及数据:r=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2,i=15(xi-x)2=10,i=15(yi-y)2=1.3,13≈3.6056
,b^=i=1n(xi-x)(yi-y)i=1n(xi-x)2,a^=y-b^x.【跟踪训练2-1】(2019·长春市质量监测)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),图1为选取的
15名志愿者身高与臂展的折线图,图2为身高与臂展所对应的散点图,并求得其回归方程为y^=1.16x-30.75,以下结论中不正确的为()A.15名志愿者身高的极差小于臂展的极差B.15名志愿者身高和臂展成正相关关系C.可估计身高为190厘米的人臂展为189.65厘米D.身高相差1
0厘米的两人臂展都相差11.6厘米【跟踪训练2-2】(2019·贵阳市第一学期监测)互联网使我们的生活日益便捷,网络外卖也开始成为不少人日常生活中不可或缺的一部分,某市一调查机构针对该市市场占有率较高的甲、乙两家网络外卖企业(以下
简称外卖甲、外卖乙)的经营情况进行了调查,调查结果如下表:1日2日3日4日5日外卖甲日接单x/百单529811外卖乙日接单y/百单2310515(1)试根据表格中这五天的日接单量情况,从统计的角度说明这两家外卖企业的经营状况;(2)据
统计表明,y与x之间具有线性关系.①请用相关系数r对y与x之间的相关性强弱进行判断(若|r|>0.75,则可认为y与x有较强的线性相关关系(r值精确到0.001));②经计算求得y与x之间的回归方程为y
^=1.382x-2.674,假定每单外卖业务,企业平均能获取纯利润3元,试预测当外卖乙日接单量不低于25百单时,外卖甲所获取的日纯利润的大致范围(x值精确到0.01).相关公式:r=i=1n(xi-x)(yi-y)i=1n
(xi-x)2i=1n(yi-y)2.参考数据:i=15(xi-x)(yi-y)=66,i=15(xi-x)2i=15(yi-y)2≈77.【名师指导】一、线性回归分析问题的类型及解题方法1.求线性回归方程(1)利用公式,求出回
归系数b^,a^.(2)待定系数法:利用回归直线过样本点的中心求系数.2.利用回归方程进行预测,把线性回归方程看作一次函数,求函数值.3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数b^.二、模型拟合效果的判断(1)残差平方和越小,模型的拟合效果越好.(2)相关指数R
2越大,模型的拟合效果越好.(3)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强.题型3独立性检验【例3-1】(2019·福州市质量检测)中国房地产业协会主办的中国房价行情网调查的一份
数据显示,2018年7月,大部分一线城市的房租租金同比涨幅都在10%以上.某部门研究成果认为,房租支出超过月收入13的租户“幸福指数”低,房租支出不超过月收入13的租户“幸福指数”高.为了了解甲、乙两小区租户的幸福指数高低,随机抽取甲、乙两小区的
租户各100户进行调查.甲小区租户的月收入以[0,3),[3,6),[6,9),[9,12),[12,15](单位:千元)分组的频率分布直方图如图所示.乙小区租户的月收入(单位:千元)的频数分布表如下:月收入[0,3)[3,6)[6,9)[9,12)[12,
15]户数38272492(1)设甲、乙两小区租户的月收入相互独立,记M表示事件“甲小区租户的月收入低于6千元,乙小区租户的月收入不低于6千元”,把频率视为概率,求M的概率;(2)利用频率分布直方图,求所抽取的甲小区100户租户的月收入的中位数;(3)若甲、乙两小
区每户的月租费分别为2千元、1千元.请根据条件完成下面的2×2列联表,并说明能否在犯错误的概率不超过0.001的前提下认为“幸福指数与租住的小区”有关.幸福指数低幸福指数高总计甲小区租户乙小区租户总计附:临界值表P(K2≥k)0.100.0100.00
1k2.7066.63510.828参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).【跟踪训练3-1】(2020·沧州模拟)某班主任对全班50名学生进行了作业量的调查,数据如表:认为作业量大认为作业量不大总计男生18927女生81523总计2624
50已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025,P(K2≥6.635)≈0.010.则________(填“有”或“没有”)97.5%的把握认为“学生的性别与认为作业量大有关
”.【跟踪训练3-2】(2019·郑州市第二次质量预测)为推动更多人去阅读和写作,联合国教科文组织确定每年的4月23日为“世界读书日”,其设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都
能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,这200人中通过电子阅读与纸质阅读的人数之比为3∶1.将这200人按年龄(单位:岁)分组,统计得到通过电子阅读的
居民的频率分布直方图如图所示.(1)求a的值及通过电子阅读的居民的平均年龄;(2)把年龄在[15,45)的居民称为中青年,年龄在[45,65]的居民称为中老年,若选出的200人中通过纸质阅读的中老年有30人,请完成下面2×2列联表,并判断
是否有97.5%的把握认为阅读方式与年龄有关?电子阅读纸质阅读总计中青年中老年总计附:P(K2≥k0)0.1500.1000.0500.0250.010k02.0722.7063.8415.0246.635K2=n(ad-bc)2(a+b)(c+d)
(a+c)(b+d).【名师指导】2个明确(1)明确两类主体;(2)明确研究的两个问题2个关键(1)准确画出2×2列联表;(2)准确求解K23个步骤(1)根据样本数据制成2×2列联表;(2)根据公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),计算K2
的值;(3)查表比较K2与临界值的大小关系,作统计判断