【文档说明】湖北省宜城一中等五校联考2020-2021学年高二下学期期中考试数学试题参考答案.pdf,共(5)页,195.287 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-46e50feb0c597f7f2e5ff8c933ff718e.html
以下为本文档部分文字说明:
1宜城一中枣阳一中襄州一中曾都一中2020-2021学年下学期高二期中考试数学参考答案南漳一中一.单选题:1-4BCAD5-8AACB二.多选题:9.CD10.AD11.BC12.ACD三.填空题:13.214.415.5416
.ln51(,)5e四.解答题:17.解:(1)依题意:kknknkkknknkxxCxxCT21)2()2()(23)2(knknkxC),1,0(nk4分则前3项系数和121-24491-22(1)4964()nnCCnnnnn或负舍故
6n6分(2)由(1)可知:23661)2(kkkkxCT7分令20236kk8分即常数项为:60)2(2623CT10分18.解:
(1)选条件①设数列na的公比为q,由3222aaS得222(22)2220qqqqq3分∴(2)(1)0qq即2q或1q;又数列na是正项数列,故2q5分从而数列na的通项公式为:1*222nnn
anN6分选条件②设数列na的公比为q,由234,2,aaa成等差数列,∴24324aaa,2分所以32222244(1)2(1)qqqqqq,解得2q,
5分从而数列na的通项公式为:1*222nnnanN6分(2)211+log,2nnnnbana8分2211(1)111(1)(
1)122(12))1122222212nnnnnnnnTn(12分19.解:(1)依题意:23)(2xaxxf,1213)1(aaf
2分23)(,221)(223xxxfxxxxf3分又(2)2,(2)8ff即0148)2(82yxxy5分故()yfx在点(2,(2))f处切
线方程为:0148yx6分(2)由(1)可知:2()32(32)(1)fxxxxx由1320)(xxxf或;由1320)(xxf又]2,1[x;]2,1[],32,1[)(在xf上单调递增,]1,32[)(在xf上单调递减.8分即272
2)32()(fxf极大值23)1()(fxf极小值,且2)2(,21)1(ff10分故2)2()(maxfxf23)1()(minfxf12分20(1)由题意得222323cacabc解得21ab
,∴椭圆C的标准方程为2214xy......4分(2)设点A、B的坐标分别为11,xy,22,xy,线段AB的中点为00,Mxy,由2214xyyxm消y得2258440xmxm,6分55016802
mm(*)7分由韦达定理得:5821mxx8分120425xxmx,005myxm10分
3∵点00,Mxy在圆221xy上,224155mm,51717m,满足(*)51717m..............................................................
.........12分21.解:(1)由题意知22||20OCx,||120ACx,...........................................1分∴2220120()(0120300)5xxtxx.........................
...........................................4分(2)122222202111()23050503020xxxtxx........................................7分令0tx,得15x...
......................................................................................................9分当015x时,0tx,当15120x时,0tx
所以)(xt在)15,0[上单调递减,在]120,15(上单调递增;.....................11分即15x时tx取最小值,所以当15xkm时运输时间最短........................
............12分22解:解:(1)fx的定义域为(0,)22223232(1)(2)()1xxxxfxxxxx.................................................1分令()0fx得1x
或2x(0,1)x时,()0fx;(1,2)x时,()0fx;(2,)x时,()0fx所以,)(xf的单调增区间是)2,1(,单调减区间是),2(),1,0(,.........................3分(2)①解
:由2()1fxx得ln10axx对(0,)x恒成立.记()ln1hxaxx(0)x其中(1)0h()1aaxhxxx当0a时,()0hx恒成立,()hx在(0,)上单调递减,4(0,1)x时,()(1)0hxh,不符合题意;.....
....................4分当0a时,令()0hx得xa(0,)xa时,()0hx,(,)xa时,()0hx所以()hx在(0,)a上单调递增,在(,)a上单调递减max()()ln10hxhaaaa....................
...........................................................6分记()ln1aaaa(0)a()lnaa令()0a得1a(0,1)a时()0a,(1,)a时
()0a()a在(0,1)上单调递减,在(1,)上单调递增()ln1(1)0aaaa即()0ha()0ha又(1)0h故1a.....................................................................
................8分②证明:由①可知(当且仅当时等号成立)令,则,.........................................9分................................11分即所以.....
............................12分ln1xx1x211xn2211ln1nn222222111111111ln1ln1ln1232312231nnnn
111111111ln12231ennn22221111ln1111ln234en222
211111111234en获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com