【文档说明】吉林省长春市博硕学校2023-2024学年高三上学期期初考试数学试题答案.docx,共(4)页,1.487 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-4602cba9efee0a154d4e128b3e030107.html
以下为本文档部分文字说明:
高三年级期初考试数学试卷参考答案一、单选题(本题共8小题,每小题5分,共40分.给出的四个选项中,只有一项符合题目要求.)题号12345678答案DABACACA二、多选题(本题共2小题,每小题5分,全部选对得5分,部分选对得2分,有选错的得0分.)题号910答案BCACD三、填空题
(共4小题,每小题5分)11.{x|x>2或x≤-6}12.2x+y-1=013.642+14.9四、解答题(共50分)15.(1)由题意得+−+−63206302xxxx所以不等式的解集为21
−xx(2)221221224121+−=+−=−xxxxy=24121ttx令,则()+−=+−=24111222
2tttty;即当1,01min===yxt;即当2,12max=−==yxt16.【详解】(1)设事件A为:“甲队以3胜1负的成绩赢得冠军”,则222113111()23344439PA=+=.(2)由题意:X的可能取
值为3,4,5.则2121317(3)34334336PX==+=,22213311155(4)23344439144PX==++=,75561(5)136144144PX==−−=,故随机变量X的分布列为:X345P7365514461144
则75561203()3453614414448EX=++=.17.(1)1464yx=(2)4元,256万元【详解】(1)由byax=得,()lnlnlnlnbyaxabx==+,令ln,ln,lnuxvyca===,则vcbu=+,由表中数据可得,()(
)()515210.410.251.6ˆ4iiiiiuuvvbuu==−−===−,则24.8716.300.25ˆ4.15955ˆcvbu=−=−=,∴𝑣̂=4.159+0.25𝑢,即14.1594ln4.1590.25lˆnlneyxx=+=
,∵4.159e64=,∴14ˆ64yx=,∴所求的回归方程为1464yx=.(2)由题意及(1)得,设每件产品的销售利润为X元,则X的所有可能取值为1.5,3.5,5.5,由直方图可得,,,ABC三类产品的频率分别为0.15,0.45,0.4
,∴()()1.50.0040.011100.15PX==+=,()()3.50.0200.025100.45PX==+=,()()5.50.0230.017100.4PX==+=,所以随机变量X的分布列为:X1.53.55.5P0.150.450.4所以1.50.
153.50.455.50.44EX=++=,故每件产品的平均销售利润为4元;设年收益为Z万元,则()14256zEXyxxx=−=−,设()144,256txfttt==−,则()()332564464ft
tt=−=−,当()0,4t时,()0ft,()ft在()0,4单週递增,当()4,t+时,()0ft,()ft在()4,+单调递减,∴当4t=,即256x=时,Z有最大值为768,∴估计当该公司一年投入256万元
营销费时,能使得该产品年收益达到最大.18.【详解】(1)设()1xgxex=−−,()1xgxe=−,由()00g=,且(),0x−时,()0gx,()0,x+时,()0gx,则()()00gxg=,可得1xex+(*);由(*)可知1xex−−,当1x时,得11
xex−,原不等式得证;(2)2()2sin(2)xfxeaxaxax=+−−+,则()2cos22xfxeaxaxa=+−−−,设()2cos22xhxeaxaxa=+−−−,则()2sin2xhxeaxa=−−,()fx在R上单调递增()0fx在R上恒成立,注
意到()00f=,只需()fx在0x=处取得最小值,易知其必要条件为()00h=,则1a=,下面证明充分性:当1a=时:2()2sin3xfxexxx=+−−,则()2cos23()xfxexxhx=
+−−=,故()2sin2xhxex=−−,①当0x时,()22sin22sin20hxxxxxxxx+−−−−=,所以()hx在()0,+上单调递增,即()fx在()0,+上单调递增;②当0x时,
若()1,0x−,则22(1)()2sin2sin220111xxxhxexxxxxx+=−−−−−−=−−−,若(,1x−−,2()2sin2120xhxexe=−−+−,所以()hx在(),0−上递减,即()fx
在(),0−上递减.由①②可知,()()00fxf=,故当1a=时,()fx在R上单调递增.当01a,由(1)知1x时,2()2cos22cos221xfxeaxaxaaxaxax=+−−−+−−−−12122211axxaaa
xaxx−−+−−−=−−,当11,0xa−时,()0fx,()fx单调递减,不合题意;当1a时:同理可得1x时,121()1axxafxx−−
=−,当10,1xa−时,()0fx,()fx单调递减,不合题意;综上所述:当1a=时,函数()fx在R上单调递增.获得更多资源请扫码加入享学资源网微信公众号www.xiangx
ue100.com