【文档说明】四川省宜宾市南溪第一中学2023-2024学年高三上学期第13周周练数学(理)试题答案.docx,共(8)页,530.158 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-4386813758a97113f7de91b16af7c53d.html
以下为本文档部分文字说明:
南溪一中高2021级高三上期第13周周练考试数学(理科)一.选择题:题号123456789101112答案AD.BCDBADBABC二、填空题:13.9014.36515.526+16.212.C【解析】取AE的中点记为H,连DH,FH,由题意知AC⊥平面BD
EF,故ACDF⊥.由AE⊥平面DHF,可得AEDF⊥,所以DF⊥平面AEC,故①正确.由题意可知,DF的中点O为外接球的球心,故半径32R=,所以243SR==,故②正确.把ADF△沿AF折成与BAF△共面,连BD,则min()22BGBD+=+,
所以BGD△的周长的最小值为222++,故③错误.由对称性可知,BE⊥平面AFC,记BE平面AFCI=,连IG,则EGI为EG与平面AFC所成的角,sinEIEGIEG=,因为22333EIBE==,所以当G为中点时,EGI的正弦值最大为223的正弦值最大为2
23,故④正确.三.解答题:17.解:(1)因为()3sincosacbAA+=+,由正弦定理可得()sinsinsin3sincosACBAA+=+即()()sinsinsin3sincosAABBAA++=+即sinsincos3sinsi
nAABAB+=又因为sin0A所以3sincos1BB−=.........................................2分所以1sin62B−=.·················
·······················································································3分又因为()0,B所以5,666B
−−所以66B−=所以3B=··················································································
····································6分(2)因为3ABCS=△所以1sin32acB=得4ac=由余弦定理得:2222cos13acbacB+=+=.又()12BDBABC=+··························
··············································································8分所以()22221117||()2cos444BDBABCcaacB=+=++=···············
········································11分得2||17BD=|故BD的长为172·······························································
··········12分18.解:(1)列联如下表:则2600(24050160150)1200126.63539021040020091k−==所以能在犯错误的概率不超过0.01的前提
下认为性别与对新能源汽车的关注有关.(2)已知600人中男性与女性的比为2:1,故:所抽男性人数为2643=人,所抽女性人数为1623=人由题意知,X服从超几何分布,()()342361,2,3kkCCPX
kkC−===()124236115CCPXC===()214236325CCPXC===()304236135CCPXC===X的分布列为:X123P1535151311232555EX=++=比较关注不太关注总计男性2401
60400女性15050200总计39021060019.解:(1)因为四边形ABCD为正方形,所以ABCD∥,因为AB平面PCD,CD平面PCD,所以AB∥平面PCD,又因为AB平面PAB,平面PAB
平面PCDl=,所以ABl∥.···········································.4分(2)记BC,AD的中点分别为E,F,连接PE,EF,PF,因为ADEF⊥,ADPF⊥,EF,PF平面PEF,EFPFF=,所以AD⊥平面PEF
,所以ADPE⊥.因为3cos4PAB=,所以2PB=,又BCPE⊥,所以1PE=,所以222PEPFEF+=,所以PEPF⊥,PF,AD平面APD,ADPFF=,所以PE⊥平面PAD.以P为坐标原点,以PF,PE所在的直线为
x,z轴,过P与AD平行的直线为y轴,建立如图所示的空间直角坐标系.·········································································
··········································6分则()0,0,0P,()3,1,0A,()0,1,1B,()0,1,1C−,()0,1,1PB=,()3,1,0PA=,()0,1,1PC=−,·······························7分
设平面PAB的法向量为()111,,mxyz=,则11110,30,mPByzmPAxy=+==+=令11x=,得(1,3,3)m=−·····························
····························8分设平面PBC的法向量为()222,,nxyz=,n·PB=y2+22=0,则22220,0,nPByznPCyz=+==−+=令21x=,得(1,0,0)n=······
···························································8分(或者说明PF⊥平面PBC,可取平面PBC的法向量为()1,0,0n=)7cos,|
|||7mnmnmn==,······························································································11分由图可知,二面角ABPC−−为钝角,所以二面角ABPC−−的余弦值
为77−.············································································12分20.解:(1)由题意知()()12,0,,0AaAa−,又31,2M
,则12331,,1,22MAaMAa=−−−=−−()()2331124aa−−−+−=−,解得2a=由31,2M在椭圆C上及2a=得219144b+=,解得23b=.
椭圆C的方程为22143xy+=(2)由(1)知,右焦点为()1,0F据题意设直线l的方程为()()()112210,1,,1,xmymPmyyQmyy=+++则12121211223323232
2,22yyyykkmymymymy−−−−====于是由120kk+=得12122323022yymymy−−+=,化简得()121243yyyy=+(*)由221,34120xmyxy=++−=消去x整理得()2234690
mymy++−=()()222(6)363414410mmm=++=+△由根与系数的关系得:12122269,3434myyyymm+=−=−++代入(*)式得:2218363434mmm−=−++,解得2m=直线l的方程为210xy−−=方法一()21212391442172
0,,416yyyy=+=+=−=−△由求根公式与弦长公式得:21257201512164PQyy=+−==设点M到直线l的距离为d,则2312135251(2)d−−==+−1115359522458MPQSPQd===△.21.解:(1)()()22111(1)(1)1(1)x
xaaafxxxxx−−+=+−=−+++①当11a−−,即0a时,由()0fx得0x,由()0fx得10x−则()fx在()1,0−上为减函数,在()0,+上为增函数.②当110a−−即01a时由()0fx得11xa−−或0x,由()0fx
得10ax−则()fx在()()1,1,0,a−−+上为增函数,在()1,0a−上为减函数.③当10a−=即1a=时,()0fx恒成立,故()fx在()1,−+上为增函数.④当10a−即1a时由()0fx
得10x−或1xa−,由()0fx得01xa−则()fx在()()1,0,1,a−−+上为增函数,在()0,1a−上为减函数.综上:当0a时,()fx在()1,0−上为减函数,在()0,+上为增函数
;当01a时,()fx在()()1,1,0,a−−+上为增函数,在()1,0a−上为减函数;当1a=时,()fx在()1,−+上为增函数;当1a时,()fx在()()1,0,1,a−−+上单增,在
()0,1a−上单减.(2)由已知得()()()11ln1gxxax=+−++,故()11(1)11axagxxxx+−=−=−++①当1a−时,()()0,gxgx在()1,−+上单调递增,不存在两个零点.②当1a−时,令()0gx得xa,令()
0gx得1xa−故()gx在()1,a−上为减函数,在(),a+上为增函数.()()()min()11ln1gxgaaaa==+−++由()gx有两个零点得:即()()11ln10aaa+−++又1a−,故()ln11a+,解得1ae−又()010g=,且当x→+时,()g
x→+当1ae−时,函数()gx有两个零点.综上可知:a的取值范围为()1,e−+22.解:(1)由已知,圆C的标准方程为:22(2)(2)4xy−+−=.可将其化为:224440xyxy+−−+=将cos,sin.xy
==代入以上方程可得:圆C的极坐标方程为24cos4sin40−−+=(2)由已知,直线l的极坐标方程为()R=,则:2,4cos4sin40.=−−+=整理得24cos4sin40−−+=由0△得02
设()()12,,,MN,则12124sin4cos,4+=+=则()22222121212216OMON+=+=+−=216(sincos)816+−=,化简得:1sin22=由02知02得:26=,或526=.12
=,或512.23.解:(1)当2a=时,()222fxxx=+−①()2,2222xxx−−++无解②()202222xxx−++解得102x−③()0,2222xxx+−解得0x综上:原不等
式的解集为1,2−+(2)当()1,1x−时,()24fxxax=+−原不等式等价于:241xaxx+−+即3axx+,则()33xaxx−++()()130,130.axax++−−故()()()()130
,130,130,130.aaaa−++++−−−−−解得2a的取值范围为()2,2−.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com