2021-2022学年高一数学人教A版必修1教学教案:2.3.1 幂函数 (4) 含解析【高考】

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 4 页
  • 大小 96.500 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高一数学人教A版必修1教学教案:2.3.1 幂函数 (4) 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高一数学人教A版必修1教学教案:2.3.1 幂函数 (4) 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高一数学人教A版必修1教学教案:2.3.1 幂函数 (4) 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的1 已有1人购买 付费阅读2.40 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高一数学人教A版必修1教学教案:2.3.1 幂函数 (4) 含解析【高考】.doc,共(4)页,96.500 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-43749932a23c06dc715668bd31c6814a.html

以下为本文档部分文字说明:

-1-2.3幂函数教学目标知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点重点从五个具体函数中认

识幂函数的性质难点画五个具体幂函数的图像并总结其规律(一)实例观察,引入新课(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P=W元P是W的函数(y=x)(2)如果正方形的边长为a,那么正方形的面积S=a2S是a的函数(y=x

2)(3)如果立方体的边长为a,那么立方体的体积V=a3S是a的函数(y=x3)(4)如果一个正方形场地的面积为S,那么正方形的边长a=12Sa是S的函数(y=12x)(5)如果某人ts内骑车行进1km,那么他骑车的平均

速度v=t-1V是t的函数(y=x-1)问题一:以上问题中的函数具有什么共同特征?学生反应:底数都是自变量,指数都是常数.【设计意图】引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征.(二)类比联想,探究新知1.幂函

数的定义一般地,函数y=xɑ叫做幂函数(powerfunction),其中x为自变量,ɑ为常数。注意:幂函数的解析式必须是y=xa的形式,其特征可归纳为“系数为1,只有1项”.(让学生判断y=2x2y=(x+1)2y=x2+1是否为幂函数)【设计意图】加深

学生对幂函数定义和呈现形式的理解.2.幂函数的图像与简单性质同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)不妨也找出典型的函数作为代表:-2-y=xy=x2y=x3y=12xy=x-1让学生自主动手,在同一坐标系中画

出这5个函数的图像4321-1-2-3-4-2246y=x-1y=x12y=x3y=x2y=x(4,2)(-2,4)(2,4)(-1,1)(-1,-1)(1,1)问题三:所有图像都过第几象限,所有图像都不过第几象限,为什么?学生反应:都过第一象限,而都不过第四象限,因为当x>0时所有幂函数都有意义

,且函数值都为正.问题四:第一象限内函数图像的变化趋势与指数有什么关系,为什么?学生反应:当指数为正时是增函数,指数为负时是减函数.为什么却讲不清楚.教师讲解:指数为正分为正分数和正整数,正无理数我们高中不做研究,当是正整数时很显然递增

,当是正分数时,可以化成根式,很显然当被开方数为正时,被开方数越大,整个根式值越大。而负指数可以化为正指数的倒数,分母递增,整个函数递减.问题五:所有图像都过哪些点,为什么?学生反应:都过点(1,1),因为1的任何指数幂都为1.问题六:对于原点,什么样的幂函

数过,什么样的幂函数不过,为什么?学生反应:指数为正过,为负则不过,因为负指数幂可以化成分数形式,分母不能为零,所以在原点没有意义.问题七:图像在第一象限的位置关系是什么样子的,为什么?学生反应:当0<x<1时,

指数小的图像在上方,当x>1时,指数大的图像在上方,对于原因大部分学生不能很快反应过来.教师活动:在0<x<1内任取个x值,例如a,肯定有o<a<1,此时联系到指数函数的单调性,有指数小的函数值越大,同样,当x>1时,指数大的函数值就大.-3-【总结】幂函数不同于指数函数和对

数函数拥有共同的定义域,所以幂函数的性质不可能全部总结清楚,但我们在探索性质的过程中知道了研究方法:指数是分数则化为根式,指数为负数则化为分式,这样对于定义域、值域、单调性、奇偶性都可以很容易看出来,不过要严格判断单调性和奇偶性还要用定义进行证明,接下来不看图像很快得出5个幂函数的相关性质

:y=xy=x2y=x3y=12xy=x-1定义域RRR[0,+∞){x︱x≠0}值域R[0,+∞)R[0,+∞){y︱y≠0}单调性增(-∞,0)增[0,+∞)减增增(-∞,0)减(0+∞)减奇偶性奇偶奇非奇非偶奇公共点(1,1)【设计意图】通过创设问题情

境,激发学生的思维,并在新知探究的过程中自然形成一般方法的呈现,使学生易于领悟和接受.(三)新知应用例1比较下列各组数的大小练习比较下列各组数的大小利用幂函数的增减性比较两个数的大小.(1)若能化为同指数,

则用幂函数的单调性比较两个数的大小;(2)若能化为同底数,则用指数函数的单调性比较两个数的大小;(3)当不能直接进行比较时,可在两个数中间插入一个中间数,间接比较上述两个数的大小.例2证明幂函数y=x在[0,+∞)上是增函数证明:1212,[0,),,xxxx+

任取且则函数性质25251.33)1(−−和8787)91(8)2(和5.14.153)3(和31317.11.5)1(和3232)53()32()2(−−−−和32528.51.4)3(和-4-1212

121212()()()()xxxxfxfxxxxx−+−=−=+1212xxxx−=+1212120,0,0,xxxxxx−+因为所以12()()fxfx所以()[0,).fxx=+即幂函数在上的增函数教师活动:强调教材中此例题的地位

和作用:(1)复习定义证明单调性的过程.(2)幂函数的单调性很容易观察,强调严格判断的时候要用单调性进行证明。(3)幂函数的单调性很容易观察,以至于在证明中直接用到了单调性,如直接判断12xx0−(四)课堂小结,归纳

提升(1)知识总结:回顾幂函数的定义和一些简单的幂函数性质.(2)思想方法:主要涉及到了归纳总结的思想,回顾研究一般具体幂函数的可行方法.(五)课后作业,巩固训练P79习题2.3:1,2,3.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?