【文档说明】山西省运城市2023-2024学年高三上学期11月期中调研数学试题 含解析.docx,共(22)页,603.813 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-3f95854dcd2e4f6859d5936548c10317.html
以下为本文档部分文字说明:
运城市2023–2024学年高三第一学期期中调研测试数学试题2023.11本试题满分150分,考试时间120分钟.答案一律写在答题卡上.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的
姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.答题时使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,
不破损.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部为()A.B.C.D.【答案】C【解析】【分析】根据的性质、复数的除法运算可得答案.【详解】,所以的虚部为.故选:C.2.若集合,,则()A.B.C.D.
【答案】C【解析】【分析】先求出集合,进而根据交集的定义求解即可.【详解】因为,,所以.故选:C.3.已知平面向量,满足,,则在方向上的投影向量为()A.B.C.D.【答案】A【解析】【分析】根据投影向量的定义,结合向量夹角的运算,求解即可.【详解】依题意,在方向上的投影向量为:,又因为,,代
入上式,所以在方向上的投影向量为:.故选:A.4.已知一个正四棱台的上下底面边长为、,侧棱长为,则棱台的体积为()A.B.C.D.【答案】D【解析】【分析】根据正四棱台的概念可知四边形为等腰梯形,进而可得四棱台的高,即可求得体积.【详解】如图所示,由正四棱台可知,四边形为等腰梯形
,且,,,所以,所以,故选:D.5.已知,若,则()A.B.C.D.【答案】B【解析】【分析】利用诱导公式和二倍角公式即可解题.【详解】,若,则,所以,又因为,则,所以.故选:B.6.若函数在处取得极
小值,则实数的取值范围是()A.B.C.D.【答案】C【解析】【分析】依题意,求出导函数,可求得极值点分别为或,再分类讨论,确定原函数的单调区间,结合极小值的定义,从而可得实数的取值范围.【详解】因为,则函数的定义域为,则,令,解得:或,当时,即,令,解得:,令,解得:,此时函数在处取得
极大值,不符合题意,舍去;当时,即,则恒成立,此时函数单调递增,没有极值,不符合题意,舍去;当时,即,令,解得:,令,解得:,此时函数在处取得极小值,符合题意.故选:C.7.古印度数学家婆什伽罗在《丽拉沃蒂》一书中提出如下问题:某人给一个人布施,初日施2子安贝(古印
度货币单位),以后逐日倍增,问一月共施几何?在这个问题中,以一个月天计算,记此人第日布施了子安贝(其中,),数列的前项和为.若关于的不等式恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】【分
析】由等比数列的定义写出通项公式和前n项和,将问题化为恒成立,应用基本不等式求右侧最小值,注意取值条件,即可得参数范围.【详解】由题设,是首项、公比都为2的等比数列,故,,所以,即,,,所以恒成立,而,当且仅当时等号成立,又,当,时;当,时;综上,即实数的取值范围为.故选:D8.定
义在上的函数满足,,若,则()A.B.C.D.【答案】D【解析】【分析】由已知可得函数为奇函数、周期函数,计算出、、,再利用周期性可得答案.【详解】因为,,所以,即,所以的周期为,且,可得,再由可得,,,,又,所
以,所以为奇函数,所以,因为,所以,,,所以.故选:D.【点睛】关键点点睛:解题的关键点是由已知得出函数为奇函数、周期函数.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.已知向量,,则()A.若,则B.若,则C.若与夹角为锐角,则且D.【答案】ACD【解析】【分析】对于A,根据两向量垂直时,数量积为零判断即可;对于B,根据两向量平行时,由判断即可;对于C,根据两向量夹角为锐角时,其数量积大于零判断即可;对于D,根据向量模的坐标运算
求解即可.【详解】对于A,若,则,解得,故A正确;对于B,若,则,解得或,故B错误;对于C,若与夹角为锐角,则,即,且,解得且,故C正确;对于D,因为,故D正确.故选:ACD10.已知,,且,则()AB.
C.D.【答案】BC【解析】【分析】由可得,进而利用消元法结合不等式的性质判断A;根据基本不等式中“1”的整体代换即可判断B;利用基本不等式结合对数运算、对数函数的性质即可判断C;利用消元法结合二次函数的性质即可判断D.【详解】对于A,由,得,即,则,故A错误;对于B,,当且仅
当,即,时,等号成立,故B正确;对于C,由,即,当且仅当,即,时等号成立,所以,故C正确;对于D,,由A知,,所以当时,取得最小值,即,故D错误.故选:BC.11.已知数列满足,,则下列结论正确的是()A.B.为等比数列C.D.【答案】AD【解析】【分析】利用递推
公式求出可判断A;由可判断B;由,利用等比数列的求和公式可判断C;由递推公式可得,再由由累加法可判断D.【详解】对于A,因为,,则,,则,,则,故A正确;对于B,,所以,,所以,,故不是等比数列,故B错误;对于C,,故C错误
;对于D,由可得,由,两式相减可得:,所以,,,……,,上式相加可得:,,又因为,所以,故D正确.故选:AD.12.如图,棱长为的正方体中,点,分别是棱,的中点,则()A.直线平面B.C.过,,三点的平面截正方体的截面面积为D.三棱锥的外接球半径为【答案】ABD【解析】【
分析】对于A,根据,利用线面平行的判定定理即可证明;对于B,通过平面,得到,同理得到,进而可得平面,再根据锥体得体积公式即可判断;对于C,首先得到截面图象,求出面积即可;对于D,由B选项可知,平面,且过外接圆的圆心,则三
棱锥的外接球的球心在上,设球心为点,以点为原点建立空间直角坐标系,求出圆心坐标,即可得出半径.【详解】对于A,如下图,连接,因为点,分别是棱,的中点,则,又,所以,又平面,平面,所以平面,故A正确;对于B,如下图:连接交平面于点,连接,正方体中易知,平面,平面,则,又正
方形中,平面,所以平面,又平面,所以,同理可证:,又平面,所以平面,易得,故四面体为正四面体,为的重心,又棱长1,所以,则则,故B正确;对于C,如图所示,由A选项可知等腰梯形即为所求截面,又,则高为,所以,故C错误;对于D,由B选项可知,平面,且过外接圆的圆心,则三棱锥的外接球的球心在上,设球心
为点,如图,以点为原点建立空间直角坐标系,则,设,则,所以,由,得,解得,所以三棱锥的外接球半径为,故D正确.故选:ABD.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的
模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半
径,列关系求解即可;④坐标法:建立空间直角坐标系,设出外接球球心的坐标,根据球心到各顶点的距离相等建立方程组,求出球心坐标,利用空间中两点间的距离公式可求得球的半径.三、填空题:本题共4小题,每小题5分,共20分.13.等差数列的前项和为,若,则______.【答案】【解析】【分析】利用等差中项的
性质,以及等差数列的前项和公式,计算即可.【详解】由等差中项的性质得:,所以,所以.故答案为:.14.已知复数满足,则的最小值为______.【答案】【解析】【分析】根据题意,由条件可得复数表示以为圆心,1为半径的圆,然后再结合其几何意义即可得到结果.【详解】设,
∵,∴,表示以为圆心,1为半径的圆,∴,表示圆上的点到点的距离,∴的最小值为.故答案为:.15.已知函数,若在区间内没有最值,则的取值范围是______.【答案】【解析】【分析】利用辅助角公式化简函数,由函数在上单调列式求解作答.【详解】因为,函数的单调区间为,由,而,得,因此函数在
区间上单调,因为函数在区间内没有最值,则函数在区间内单调,于是,则,解得,由,且,解得,又,从而或,当时,得,又,即有,当时,得,所以的取值范围是.故答案为:.16.已知函数有三个不同的零点,则实数的范围为______.
【答案】【解析】【分析】利用导数的几何意义、函数零点的定义分析运算即可得解.【详解】解:由题意,,,当时,只有一个零点,不符合题意,故.∵,且当时有且只有一个零点,∴函数有三个不同的零点等价于函数有两个不同的零点,即与有两个不同的交点.如上图
,当与相切时,设切点为,则由解得:,则.如上图,由与有两个不同的交点知,解得:,∴实数的范围为.故答案为:.【点睛】方法点睛:利用函数零点求参数范围的方法:1.利用零点的个数结合函数的单调性构建不等式求解.2.转化为两个熟悉的函
数图象的位置关系问题,从而构建不等式求解.3.分离参数()后,将原问题转化为的值域(最值)问题或转化为直线与的交点个数问题(优选分离、次选分类)求解.四、解答题:本题共6小题,共70分,17题10分,18-22各12分.解答应写出文字说明、证明过程或演算步骤.17.已知函数的图象关于直线
对称.(1)求证:函数为奇函数.(2)将的图象向左平移个单位,再将横坐标伸长为原来的倍,得到的图象,求的单调递增区间.【答案】(1)证明见解析(2)【解析】【分析】(1)利用函数图象关于对称,求,进而得到
函数解析式,从而证明;(2)由函数图象的变换规律,得到的解析式,即可求出单调增区间.【小问1详解】因为的图象关于直线对称,所以,得,,因为,所以当时,,所以,所以,因为,所以为奇函数成立.【小问2详解】由(1)可
得:,将的图象向左平移个单位,再将横坐标伸长为原来的倍,则由可得,,故函数的单调递增区间是18.已知递增的等差数列满足,且是与的等比中项.(1)求数列的通项公式;(2)记,证明数列的前项和.【答案】18.19.证
明见解析【解析】【分析】(1)利用等差数列的通项公式和等比数列的等比中项求解,得到数列的通项公式.(2)利用错位相减,计算数列的前项和,根据判断大小.小问1详解】设等差数列的公差为,由题可知,因为,所以,又是与的等比中项,所以,即,得
或(舍去),所以.【小问2详解】由(1)知:所以数列的前项和①①得:②两式相减得:,化简得:.因为,所以,所以.19.在中,,,分别为角,,所对的边,为的面积,且.(I)求角的大小;(II)若,,为的中点,且,求的值.【答案】(I);(II).
【解析】【分析】(I)利用正余弦定理及面积公式,代入对应公式得,解得,(II)为的中点,利用向量,再根据余弦定理得,解得,,最后根据正弦定理可得解.【详解】(I)由已知得,∴.即.∴.又∵,,(II)由得:,又∵为的中点,∴,,∴,即又∵
,∴.又∵,∴,,∴.20.如图①,在等腰梯形中,,分别为的中点,,为的中点.现将四边形沿折起,使平面平面,得到如图②所示的多面体.在图②中:(1)证明:;(2)求平面与平面夹角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】
(1)根据折叠前后垂直的关系不变可得,由线面垂直的判定定理可得平面,由线面垂直性质可得;(2)根据面面垂直性质可知以为坐标原点,分别以所在直线为轴建立空间直角坐标系,利用二面角的空间向量求法可得平面与平面夹角的余弦值为.
【小问1详解】由题意知在等腰梯形中,,又分别为的中点,所以,即折叠后,,所以平面,又平面,所以.【小问2详解】∵平面平面,平面平面,且,所以平面,平面,,两两垂直,以为坐标原点,分别以所在直线为轴,建立空间直角坐标系,易知,所以,则设平面的法向量,则,取,则,得;设平面
的法向量则,取,则,可得,,由图易知平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.21.已知函数在点处的切线为:,函数在点处的切线为:.(1)若,均过原点,求这两条切线斜率之间的等量关系.(2)当时,若,此时的最大值记为
m,证明:.【答案】(1)(2)证明见解析【解析】【分析】(1)求导,利用导数结合点斜式求解切线方程,根据切线经过原点即可求解;(2)构造,求导确定单调性即可求解.【小问1详解】由题可得,,:,:,因为均过原点,所以,因为均过原点,所以,所以.【小问2详解】由题,,记,,记,在
单调递减,且,,使得,即,且在上单调递增,在上单调递减.,∵,又∵,故得证.22.已知函数.(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.【答案】(1)答案见解析(2)【解析】【分析】含参数的单调性讨论问题,求导后分情况讨论根的个
数与大小即可.指对同构问题,将所求不等式变形,构造新函数,再利用单调性求解.【小问1详解】的定义域是,令当时,∵,∴∴,∴在单调递增当时,,若,即时,,∴,∴在单调递减若,即时,令,解得,,易得在单调递减,在单调递增,在单调递减
,综上所述:当时,在单调递增当时,在单调递减,在单调递增,在单调递减,当时,在单调递减【小问2详解】解法一:由题易得令,有在为增函数原式等价于,即即,令由(1)知时,在为减函数,∴,∴解法二:由题易得令,有在为增函数原式等价于,即设对恒成立首先,即,下面证明
时,恒成立由(1)知,当时,,,此题的证∴.【点睛】本题第一问属于含参数的单调性讨论问题,先求导,再用参数讨论方程的根个数与大小,得出不等式的解集即为函数的单调区间;第二问属于指对同构类问题,一般指数和对数
函数同时出现时考虑指对同构,再构造新函数,利用单调性求参数的范围即可.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com