【文档说明】上海市洋泾中学2020-2021学年高二下学期3月月考数学试题 含答案.docx,共(5)页,310.715 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-39e4b71997565f39d0967091dea55a58.html
以下为本文档部分文字说明:
洋泾中学高二月考数学试卷2021.03一、填空题1.双曲线22145xy−=的焦距等于____________2.若复数z满足232zzi+=+,其中i为虚数单位,则||z=___________3.过点(1
,1)且与直线210xy−+=垂直的直线方程为___________4.已知长方体1111ABCDABCD−中,2AB=,1AD=,11AA=,点E在棱AB上移动,当AE=___________时,直线1DE与平面11AADD所成角为45.5.如图是表示一
个正方体表面的一种平面展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有___________对6.已知圆22()4xay−+=被直线1xy+=所截得的弦长为22,则实数a的值为___________7.在45的二面角的
一个半平面内有一点P,它到另一个半平面的距离等于1,则点P到二面角的棱的距离为___________8.过抛物线2yx=的焦点F作一直线交抛物线于()11,Mxy、()22,Nxy两点,如果121xx+=,则线段MN的中点到准线的距离等于___________9.如图,在正方体1111AB
CDABCD−中,1AB=,11AD中点为P,则过P、A、C三点的截面面积为___________10.若将一个45的直角三角板的一直角边放在一桌面上,另一直角边与桌面所成角为45,则此时该三角板的斜边与
桌面所成的角等于___________11.如图,1111ABCDABCD−是棱长为1的正方体,一个质点从A出发沿正方体的面对角线运动,每走完一条面对角线称为“走完一段”,质点的运动规则如下:运动第i段与第2i+所在直线必
须是异面直线(其中i是正整数),质点走完的第99段与第1段所在的直线所成的角是___________12.已知二面角CD−−的大小为,A为平面上的一点,且ACD的面积为2,过A点的直线AB交平面于B点,ABCD⊥,且AB与成60角,当变化时,BCD的面积最大为_____
______二、选择题13.若直线//a平面,直线b在平面内,则直线a与b的位置关系为()A.一定平行B.一定异面C.可能相交D.可能平行、可能异面14.正方体1111ABCDABCD−中,P为面11BBCC内的一动点,若点
P到直线BC与直线11DC的距离相等,则动点P的轨迹是()A.一条线段B.一段圆弧C.抛物线的一部分D.椭圆的一部分15.关于两条不同的直线m、l和两个不同的平面、,下面命题中正确的是()A.若//,lm=,则//lmB.若,//lm⊥,则lm⊥C.若//,//lm
,则//lmD.若//,lml⊥,则m⊥16.如图,在矩形ABCD中,2,1ABBC==,E、N分别是边AB、BC的中点,沿DE将ADE折起,点A折至1A处(1A与A不重合),若M、K分别为线段1AD、1AC的中点,则在ADE折起
过程中,下列选项正确的是()A.DE可以与1AC垂直B.不能同时做到//MN平面1ABE且//BK平面1ADEC.当1MNAD⊥时,MN⊥平面1ADED.直线1AE、BK与平面BCDE所成角分别为1、2,1、
2能够同时取得最大值三、解答题17.关于x的方程260xxm++=有一个虚根的模为13,求实数m并解这个方程.18.如图,在棱长为a的正方体1111ABCDABCD−中,E、F分别是BD和1BC的中点.(1)求异面直线AB和11AD的距离;(2)求异面直线EF与C
D所成角的大小.19.已知椭圆2222:1(0)xyCabab+=的左右焦点分别为1F、2F,点(0,2)M是椭圆的一个顶点,12FMF是等腰直角三角形.(1)求椭圆C的方程;(2)求直线1yx=+被椭圆C截得的弦长.20.如图,ABC是边长为4的正
三角形,点D是ABC所在平面外一点,3AD=且AD⊥平面ABC,E为AB的中点.(1)求证:CE⊥平面ABD;(2)求直线AD和平面CDE所成角的大小;(3)求点A到平面BCD的距离.21.已知正方形ABCD和矩形ACEF所在的平面互相垂直
,且1AB=,1AF=,点M是线段EF中点.(1)求证://AM平面BDE;(2)求二面角ADFB−−的大小;(3)线段AC上是否存在点P,使得PF与AD所成的角恰为60?若存在,请求出AP的长,若不存在,请说明理由.参考答案一、填空题1.62.5
3.230xy+−=4.25.36.3或1−7.28.349.9810.3011.9012.433二、选择题13.D14.C15.B16.D三、解答题17.1213,32,32mxixi==−+=−−18.(1)2;(2)4.19.(1)22184xy+=;
(2)4113.20.(1)证明略;(2)2arctan3;(3)677.21.(1)证明略;(2)arctan2;(3)存在,1AP=.