山东省招远市第一中学2020-2021学年高一下学期期末学业水平诊断数学试卷 扫描版含答案

PDF
  • 阅读 11 次
  • 下载 0 次
  • 页数 7 页
  • 大小 3.087 MB
  • 2024-10-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
山东省招远市第一中学2020-2021学年高一下学期期末学业水平诊断数学试卷 扫描版含答案
可在后台配置第一页与第二页中间广告代码
山东省招远市第一中学2020-2021学年高一下学期期末学业水平诊断数学试卷 扫描版含答案
可在后台配置第二页与第三页中间广告代码
山东省招远市第一中学2020-2021学年高一下学期期末学业水平诊断数学试卷 扫描版含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有11人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】山东省招远市第一中学2020-2021学年高一下学期期末学业水平诊断数学试卷 扫描版含答案.pdf,共(7)页,3.087 MB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-31695807c3cf0f01a163911734985557.html

以下为本文档部分文字说明:

高一数学参考答案第1页(共5页)ABCDEFGH2020-2021学年度第二学期期末学业水平诊断高一数学参考答案一、选择题CACDBCDA二、选择题9.AC10.BCD11.ABD12.ACD三、填空题13.0.9414.36

6615.2222ABCACDADBBCDSSSS∆∆∆∆++=16.283π四、解答题17.证明:(1)连接BD,因为,EF分别为棱,ABAD的中点,所以11//,22EFBDEFBD=.·································2分同理11//,22HGB

DHGBD=.································4分所以//EFGH且EFGH=.··································5分所以四边形EFGH是平行四边形.····························6分(2)当

ACBD⊥且ACBD=时,四边形EFGH为正方形.·····················10分18.解:(1)设事件,,,ABCD分别表示“被评为等级,,,ABCD”.由题意,事件,,,ABCD两两互斥,所以3131()1483232PD=−−−=.···············

··········································2分又CD=“延迟送达且被罚款”,所以1()()()8PCDPCPD=+=.······················································4分因此“延迟

送达且被罚款”的概率为18.·················································5分高一数学参考答案第2页(共5页)(2)设事件,,,iiiiABCD表示“第i单被

评为等级,,,ABCD”,1,2i=.则“两单共获得的奖励为0元”即事件221221()()()ABACAC,·············7分且事件221221,,ABACAC互斥,又22111()8864PAB=×=.·································

···································8分又1221339()()432128PACPAC==×=.··················································9分所以221221[()()()]PPABAC

AC=221221()()()PABPACPAC=++··············································10分1133528843232=×+××=.·······························

··························12分19.解:(1)由题意,435761179869440y×+×+×+×+×+×=···········································2分6.

5=.··························································································3分22221[3(46.5)7(56.5)11(66.5)40ys=×−+×−+×−

2229(76.5)6(86.5)4(96.5)]+×−+×−+×−·······························5分1.95=.··································

······················································6分(2)由(1)可得,1(5040)90zxy=+······················································8分1(507.4406

.5)790=×+×=.·····································9分2225040[2.6(7.47)][1.95(6.57)]9090zs=+−+×+−····················

·············11分11345=.··················································································12分高一数学参考答案第3页(共5

页)20.解(1)证明:因为1ABAA⊥,ABAC⊥,1ACAAA=所以AB⊥平面11ACCA,·································································

2分1AC⊂平面11ACCA,所以1ABAC⊥.···············································3分又因为直三棱柱111ABCABC−中,1AAAC=,所以四边形11ACCA为正方形,所以11ACAC⊥.························

···········4分因为1ACABA=,所以1AC⊥平面1ABC,·······································5分1BC⊂平面1ABC,所以11ACBC⊥.···········

········································6分(2)过1A作111ADBC⊥,垂足为D,连CD,则1AD⊥平面11BCCB,1ACD∠为1AC与平面11BCCB所成的角.···················8分因为11AAAC==

,则12AC=,所以11112sin42ADADACDACa∠===,所以112AD=.··························9分在11RtACD∆中,111111sin2ADACDAC∠==,所以1130ACD∠

=.在111RtABC∆中,11113tan303ABAC==.······································10分所以1111331132318AABCBAACVV−−==××××=.··

·······························12分21.解:(1)由已知()0.0040.0060.020.030.024101m+++++×=,·············2分解得0.016m=.························

·····················································3分(2)测试成绩的平均数450.04550.06650.2750.3850.24950.16x=×

+×+×+×+×+×·········4分76.2=.············································································

·········5分测试成绩落在区间[40,70)的频率为()0.0040.0060.02100.3++×=,落在在区间[40,80)的频率为()0.0040.0060.020.03100.6+++×=,所以设第57百分位数为a,有()0.3700.030.57

a+−×=,··················6分解得79a=.··················································································7分D

CBAC1B1A1高一数学参考答案第4页(共5页)FGMEDCBANNABCDEM(3)由题知,测试分数位于区间[80,90)、[90,100)的人数之比为0.2430.162=,所以采用分层随机抽样确定的5人,在区间[

80,90)中3人,用123,,AAA表示,在区间[90,100)中2人,用12,BB表示.····················································8分从这5人中抽取2人的所有可能情况有:12(,

)AA,13(,)AA,11(,)AB,12(,)AB,23(,)AA,21(,)AB,22(,)AB,31(,)AB,32(,)AB,12(,)BB,共10种.······10分其中“落在区间[80,90)和[90,100)”有6种.·

··········································11分所以3()5PA=.···················································································1

2分22.解:(1)证明:取AE中点N,连MN,则//MNDE,12MNDE=.······1分又因为//BCDE,12BCDE=,所以//BCMN,BCMN=.···································2分所

以四边形BCMN为平行四边形,所以//BNCM.····3分又因为BN⊂平面ABE,CM⊄平面ABE,所以//CM平面ABE.···········································5分(2)延长,EBDC交于点F,则AF为平面ABE

与平面ACD的交线.·············6分因为//BCDE,12BCDE=,所以2BFBE==.三角形ADE中,因为2ADDEAE===,N为AE的中点,所以DNAE⊥,又因为DEBE⊥,AEBE⊥,DEAEE=所以BE⊥平面ADE,DN⊂平

面ADE,所以DNBE⊥.又因为BEAEE=,所以DN⊥平面ABE.AF⊂平面ABE,所以DNAF⊥.························································8分在三角形AEF中,过N作N

GAF⊥,垂足为G,连接DG,因为DNNGN=.所以AF⊥平面DNG,DG⊂平面DNG,所以AFDG⊥.所以DGN∠为二面角DAFE−−的平面角.·······························

·············9分高一数学参考答案第5页(共5页)在RTAEF∆中,2,4AEEF==,41625AF=+=,由AEFAGH∆∆,所以AFANAEGN=,255NG=.···································10分在RTDNG∆中,253,5DN

NG==,22955DGDNNG=+=,所以219cos19NGDGNDG∠==.···························································11分即面ABE与面ACD所成二面角(锐角)的

余弦值为21919.······················12分

管理员店铺
管理员店铺
管理员店铺
  • 文档 474179
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?