【文档说明】高中数学人教版必修5教案:2.3等差数列的前n项和 (系列二)含答案【高考】.doc,共(8)页,271.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-314523be2854557ae9317eee06fd71a4.html
以下为本文档部分文字说明:
12.3等差数列的前项和2.3.1等差数列的前项和(一)从容说课“等差数列的前项和”第一节课主要通过高斯算法来引起学生对数列求和的兴趣,进而引导学生对等差数列的前项和公式作出探究,逐步引出求和公式以及公式的变形,初步形成对等差数列的前项和公式的认识,让学生通过探究
了解一些解决数学问题的一般思路和方法,体会从特殊到一般,再从一般到特殊的思维规律,所以,在教学中宜采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法.为了让学生较熟练地掌握公式,要采用设计变式题的教学
手段.通过本节的例题的教学,使学生感受到在实际问题中建立数学模型的必要性,以及如何去建立数学模型的方式方法,培养学生善于从实际情境中去发现数列模型,促进学生对本节内容的认知结构的形成.教学重点等差数列的前项和公式的理解、推导及应用.教学难点灵活应用等差数列前项和公式解决一些简
单的有关问题.教具准备多媒体课件、投影仪、投影胶片等三维目标一、知识与技能掌握等差数列前项和公式及其获取思路;会用等差数列的前项和公式解决一些简单的与前项和有关的问题.二、过程与方法通过公式的推导和公式的运用,使学生体会从特殊到一般,再
从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.三、情感态度与价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和
自信心,增强学生学好数学的心理体验,产生热爱数学的情感.教学过程2导入新课教师出示投影胶片1:印度泰姬陵()是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊
斯兰教文化的象征.陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高
斯算法的阶段)生只要计算出1+2+3+…+100的结果就是这些宝石的总数.师对,问题转化为求这100个数的和.怎样求这100个数的和呢?这里还有一段故事.教师出示投影胶片2:高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2
+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5050.”3教师问:“你是如何算出答案的?”高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5050.
师这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?生高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=505
0.师对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5050了
.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.师问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么?生这个数列是等差数列,1
+2+3+…+100这个式子实质上是求这数列的前100项的和.师对,这节课我们就来研究等差数列的前项的和的问题.推进新课[合作探究]师我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图
,则图中第1层到第21层一共有多少颗宝石呢?生这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好首尾配成对了.师高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项
,我们是否有简单的方法来解决这个问题呢?生有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是221)211(+.4师妙得很!
这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是:1+2+3+…+21,21+20+19+…+1,对齐相加(其中下第二行的式子与第一行的式子恰好是倒序)这实质上就是我们数学中一种求和的重要方法——“倒序相加法”.现在我将求和问题一般化:(
1)求1到的正整数之和,即求1+2+3+…+(-1)+.(注:这问题在前面思路的引导下可由学生轻松解决)(2)如何求等差数列{}的前项的和?生1对于问题(2),我这样来求:因为=1+2+3+…+,=+-1+…+2+1,再将两式相加,因为有等差数列的通项的性质:若+=+,则+=+,所以
2)(1nnaanS+=.(Ⅰ)生2对于问题(2),我是这样来求的:因为=1+(1+)+(1+2)+(1+3)+…+[1+(-1)×],所以=1+[1+2+3+…+(-1)]=1+2)1(−nn,即=1+2)1(−nn.(Ⅱ)[
教师精讲]两位同学的推导过程都很精彩,一位同学是用“倒序相加法”,后一位同学用的是基本量来转化为用我们前面求得的结论,并且我们得到了等差数列前项求和的两种不同的公式.这两种求和公式都很重要,都称为等差数列的前项和公式.其中公式(Ⅰ)
是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项1,下底是第项,高是项数,有利于我们的记忆.[方法引导]师如果已知等差数列的首项1,项数为,第项为,则求这数列的前项和用公式(Ⅰ)来进行
,若已知首项1,项数为,公差,则求这数列的前项和用公式(Ⅱ)来进行.引导学生总结:这些公式中出现了几个量?生每个公式中都是5个量.5师如果我们用方程思想去看这两个求和公式,你会有何种想法?生已知其中的三个变量
,可利用构造方程或方程组求另外两个变量(知三求二).师当公差≠0时,等差数列{}的前项和可表示为的不含常数项的二次函数,且这二次函数的二次项系数的2倍就是公差.[知识应用]【例1】(直接代公式)计算:(1)1+2+3+…+;(2)1+3+5+…+
(2-1);(3)2+4+6+…+2;(4)1-2+3-4+5-6+…+(2-1)-2.(让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)~(3),并请一位同学回答.生(1)1+2+3+…+=2)1(+nn;(2)1+3+5+…+(2-1)=2
)11(−+nn=2;(3)2+4+6+…+2=2)22(+nn=(+1).师第(4)小题数列共有几项?是否为等差数列?能否直接运用公式求解?若不能,那应如何解答?(小组讨论后,让学生发言解答)生(4)中的数列共有2项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式=[1+3
+5+…+(2-1)]-(2+4+6+…+2)=2-(+1)=-.生上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(-1)+(-1)+…+(-1)=-.师很好!在解题时我们应仔细观察,
寻找规律,往往会寻找到好的方法.注意在运用求和公式时,要看清等差数列的项数,否则会引起错解.【例2】(课本第49页例1)分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信息吗?生由题意我发现了等差数列的模型,这个等差数列的首项是500,记为1,公
差为50,记为,而从2001年到2010年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了.师这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式)6【例3】(课本第50页例2
)已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前项和的公式吗?分析:若要确定其前项求和公式,则必须确定什么?生必须要确定首项1与公差.师首项与公差现在都未知,那么应如何来确定?生由已知条件,我们已知
了这个等差数列中的10与20,于是可从中获得两个关于1和的关系式,组成方程组便可从中求得.(解答见课本第50页)师通过上面例题3我们发现了在以上两个公式中,有5个变量.已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二).运用方程思想
来解决问题.[合作探究]师请同学们阅读课本第50页的例3,阅读后我们来互相进行交流.(给出一定的时间让学生对本题加以理解)师本题是给出了一个数列的前项和的式子,来判断它是否是等差数列.解题的出发点是什么?生从所给的
和的公式出发去求出通项.师对的,通项与前项的和公式有何种关系?生当=1时,1=1,而当>1时,=--1.师回答的真好!由的定义可知,当=1时,1=1;当≥2时,=--1,即=1(=1),--1(≥2).这种已
知数列的来确定数列通项的方法对任意数列都是可行的.本题用这方法求出的通项=2-21,我们从中知它是等差数列,这时当=1也是满足的,但是不是所有已知求的问题都能使=1时,=--1满足呢?请同学们再来探究一下课本第51页的探究问题.生1这题中当
=1时,1=1=++;当≥2时,=--1=2-+,由=1代入的结果为+,要使=1时也适合,必须有=0.生2当=0时,这个数列是等差数列,当≠0时,这个数列不是等差数列.生3这里的≠0也是必要的,若=0,则当≥2时,=--1=+,则变为常数列了,≠0
也还是等差数列.师如果一个数列的前项和公式是常数项为0,且是关于的二次型函数,则这个数列一定是7等差数列,从而使我们能从数列的前项和公式的结构特征上来认识等差数列.实质上等差数列的两个求和公式中皆无常数项.课
堂练习等差数列-10,-6,-2,2,…前多少项的和是54?(学生板演)解:设题中的等差数列为{},前项和为,则1=-10,=(-6)-(-10)=4,=54,由公式可得-10+2)1(−nn×4=54.解之,得1=9,2=-3(舍去).所以等差数列-10,-6,-2,2…前9项的和是54.(教师
对学生的解答给出评价)课堂小结师同学们,本节课我们学习了哪些数学内容?生①等差数列的前项和公式1:2)(1nnaanS+=,②等差数列的前项和公式2:2)1(1dnnnaSn−+=.师通过等差数列的前项和公式内容的学习,我们从中体会到哪些数学的思想方法?生①通过等差数列的前项和公式的推导我们了解
了数学中一种求和的重要方法——“倒序相加法”.②“知三求二”的方程思想,即已知其中的三个变量,可利用构造方程或方程组求另外两个变量.师本节课我们通过探究还得到了等差数列的性质中的什么内容?生如果一个数列的前项和公式中的常数
项为0,且是关于的二次型函数,则这个数列一定是等差数列,否则这个数列就不是等差数列,从而使我们能从数列的前项和公式的结构特征上来认识等差数列.布置作业课本第52页习题2.3组第2、3题.板书设计等差数列的前项和(一)8公式:2)1(2)(1
1dnnnaaanSnn−+=+=推导过程例