【文档说明】河南省新蔡县四校联考2022届高三上学期11月调研考试数学(理)试题答案.docx,共(5)页,275.111 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-2f0ca115165f9606d3c1fda1562b7148.html
以下为本文档部分文字说明:
2021-2022学年度上期高中调研考试三年级理科数学答案一、选择题:123456789101112DDBDCCABCCAB二、填空题:13.114.15.542+16.①②④三、解答题:17.【解析】若命题p为真命题,则1a−;------------------
------------------------------------2分若命题q为真命题,则216044aa=−−即------------------------------------------4分命题“pq”为假,“pq”为真,pq中一真一假---------------
---------------------------5分若p真q假,则1444aaaa−−−或,----------------------------------------------------7分若p
假q真,则11444aaa−−−,----------------------------------------------------9分综上4a−或14a−.-------
----------------------------------------------------------------------10分18.【解析】(1)因为2cos23abab==−,------------------------
----------------------2分所以4b=,------------------------------------------------------------------------------------------
---3分所以b在a方向上的投影为21cos4232b=−=−.-----------------------------------------6分(2)()222224427ababa
abb−=−=−+=,----------------------------------------8分()22220bababb−=−=−,--------------------------------------------------
--------------------10分设向量b与2ab−的夹角为,则()22057cos144272babbab−−===−−.------------------12分19.【解析】(1)∵*Nn时,
122nnaS+=+,∴当2n时,122nnaS−=+.----------1分两式相减得:()132nnaan+=.-----------------------------------------
--------------------------------3分又12a=,21226aa=+=,∴213aa=---------------------------------------------------------
-----4分∴na是首项为2,公比为3的等比数列.从而123nna−=.--------------------------------------6分(2)∵123nna−=,∴1123nna−+=,∴123nna+=,31nnS=−,--
-----------------------7分∴()13log123nnnnbaSn−=+=.---------------------------------------------------------------------8分∴011123234323nnnTbbb
bn−=++++=+++①------------------------------------9分∴23234323nnTn=++②.①-②,得:011223232323n
nnTn−−=+++−------------------------------------------------------------10分()011233323nnn−=+++−1322313nnn−=−−3123nnn=−−--------
---------------11分∴11322nnTn=−+---------------------------------------------------------------------------------12分20.【解析
】(1)在ABC△中,因为3,2,45acB===,由余弦定理2222cosbacacB=+−,--------------------------------------------------------------2分得292232cos455
b=+−=,所以5b=.----------------------------------------------3分在ABC△中,由正弦定理sinsinbcBC=,-----------------------------------------
--------------4分得52=sin45sinC,------------------------------------------------------------------------------------5分所以5sin.5C=
---------------------------------------------------------------------------------------6分(2)在ADC△中,因为4cos5ADC=−,所以ADC为钝角,而180ADCCCAD++
=,所以C为锐角.-----------------------------------------------7分故225cos1sin,5CC=−=则sin1tancos2CCC==.----------------------------
----------------8分因为4cos5ADC=−,所以23sin1cos5ADCADC=−=,sin3tancos4ADCADCADC==−.---------------------------------------------------------------
-------10分从而tan∠DAC=tan(π-∠ADC-∠C)=-tan(∠ADC+∠C)=-=-----------------12分21.【解析】(1)设1111,,,AABBCDEF都与MN垂直,1111,,,ABDF是相应垂足.由条件知,当40O'B=时,311
40640160,800BB=−+=----------------------------1分则1160AA=.-------------------------------------------
----------------------------------------------2分由21160,40O'A=-------------------------------------------------------------
-----------------------3分得80.O'A=-----------------------------------------------------------------------------------------4分所以8040120ABO
'AO'B=+=+=(米).--------------------------------------------------5分(2)以O为原点,OO'为y轴建立平面直角坐标系xOy(如图所示).---------------6分设2(,),(0,40),Fxyx则321
6,800yxx=−+3211601606800EFyxx=−=+−.-----------------------------------------------------------------7分因为80,CE=所以80O'Cx=−
.设1(80,),Dxy−则211(80),40yx=−所以22111160160(80)4.4040CDyxxx=−=−−=−+----------------------------------------8分记桥墩CD和EF的总造价为()fx,则3232131()=(
1606)(4)80024013(160)(040).80080fxkxxkxxkxxx+−+−+=−+---------------------------------------------9分2333()=(160
)(20)80040800kfxkxxxx−+=−,-----------------------------------------------10分令()=0fx,得20.x=所以当20x=时,()fx取得最小值.--------
----------------------------------------------------11分答:(1)桥AB的长度为120米;(2)当O'E为20米时,桥墩CD和EF的总造价最低.--------
----------------------------12分22.【解析】(1)()ln1xfxex=−+Q,1()xfxex=−,---------------------1分(1)1kfe==−.----------------
---------------------------------------------------------------------2分(1)1fe=+Q,∴切点坐标为(1,1+e),∴函数f(x)在
点(1,f(1)处的切线方程为1(1)(1)yeex−−=−−,即()12yex=−+,--------3分切线与坐标轴交点坐标分别为2(0,2),(,0)1e−−,---------------------------------------------------5分∴所求三角
形面积为1222||=211ee−−−;-------------------------------------------------------------6分(2)解法一:1()lnlnxfxaexa−=−+Q,11()xfxaex−=−,且0a.----
----------------------------------------------------------------------7分设()()gxfx=,则121()0,xgxaex−=+∴g(x)在(0,)
+上单调递增,即()fx在(0,)+上单调递增,当1a=时,()01f=,∴()()11minfxf==,∴()1fx成立.---------------------8分当1a时,11a,111ae−∴,111()(1)(1)(1)0af
faeaa−=−−,∴存在唯一00x,使得01001()0xfxaex−=−=,且当0(0,)xx时()0fx,当0(,)xx+时()0fx,0101xaex−=,00ln1lnaxx+−=−,因此01min00()()lnlnxfxfxaexa
−==−+000011ln1ln2ln122ln1axaaxaxx=++−+−+=+>1,∴()1,fx∴()1fx恒成立;---------------------------------------------10分当01a时,(1)ln1,faa
a=+∴(1)1,()1ffx不是恒成立.-----------11分综上所述,实数a的取值范围是[1,+∞).----------------------------------------------
----------------12分解法二:()111xlnaxfxaelnxlnaelnxlna−+−=−+=−+等价于11lnaxlnxelnaxlnxxelnx+−++−+=+,----------------------------------------------------
-------9分令()xgxex=+,上述不等式等价于()()1glnaxglnx+−,----------------------------------10分显然()gx为单调增函数,∴又等价于1lnaxlnx+−,即1lnalnxx−+,-------
--11分令()1hxlnxx=−+,则()111xhxxx−=−=在()0,1上h’(x)>0,h(x)单调递增;在(1,+∞)上h’(x)<0,h(x)单调递减,∴()()10maxhxh==,0
1lnaa,即,∴a的取值范围是[1,+∞).-------------------------------------12分