【文档说明】《【考前抓大题】冲刺中考数学》专题19 因旋转产生的角度问题(提优)(原卷版).docx,共(10)页,213.932 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-2c1c60138611ef56057606a8ae5da3a4.html
以下为本文档部分文字说明:
1专题19因旋转产生的角度问题(提优)1.如图1,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠BAN=°;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP绕点B开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的
速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前.若两射线交于点C,过C作∠ACD交P
Q于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.2.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图
1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE
与∠CDE的角平分线交于点N,∠ABM=23∠ABN,∠CDM=23∠CDN,写出∠M与∠E之间数量关系,并说明理由.23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图2,灯A射线自AM顺时针旋转至AN便立即回转至原位置,灯B射
线自BP顺时针旋转至BQ便立即回转至原位置,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值.(2)如图1,若两灯同时转动,在灯A射线第一次
转到AN之前,两灯射出的光线交于点C,若∠C=70°,求∠BAC的度数.(3)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线第一次转到BQ之前,A灯转动几秒,两灯的光线互相平行?4.钱塘江汛期即将来临
,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣
4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作
CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.35.如图,钱塘江入海口某处河道两岸所在直线(PQ,MN)夹角为20°,在河道两岸安装探照灯B和A,若灯A射线自AM顺时针旋转至AN便立即回
转,灯B射线自BQ逆时针旋转至BP便立即回转,两灯不停交叉照射巡视.设灯A转动的速度是a度/秒,灯B转动的速度是b度/秒.已知∠BAN=50°(1)当b=2时,问灯B转动几秒后,射出的光束第一次经过灯A?(2)当
a=3,b=6时,若两灯同时转动,在1分钟内(包括1分钟),问A灯转动几秒,两灯的光束互相平行?(3)若A、B两灯同时转动(a>b),在45秒与90秒时,两灯的光束各平行一次,求a,b的值.6.长江汛期即将来临,防汛
指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a﹣3|+√𝑏−1=0.假定
这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a,b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点
D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系.47.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立
即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足3a=27=32•3b.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达
BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BCD:∠BAC=.8.长江汛期即将来临,防汛指
挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b
满足|a﹣3b|+b2﹣2b+1=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)则a=,b=;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相
平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是(请直接写出结论).59.辽宁汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,
便于夜间查看河水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线白BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3|+
(a+b﹣4)2=0,假定这带两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)请直接写出a=,b=.(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动秒,两灯的光束互相平行.(请直接写出答案)10.如图,取一副三角板按图1拼接,固定三角板ADE(
∠AED=30°的Rt△),将三角板ABC(∠ACB=45°的Rt△)绕点A顺时针旋转一个大小为α的角(0°<c≤45°),试问:(1)当α=度时,能使图2中的AB∥DE;(2)当α=度时,能使图3中的AB与AE重合;(3)当0°<a≤45°时,
连接BD(如图12﹣4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.611.(1)如图1,若AB∥CD,将点P在AB、CD内部,∠B,∠D,∠P满足的数量关系是,并说明理由.(2)在图1中,将直线AB绕点B逆时针方向旋转
一定角度交直线CD于点Q,如图2,利用(1)中的结论(可以直接套用),求∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(3)科技活动课上,雨轩同学制作了一个图(3)的“飞旋镖”,经测量发现∠PAC=30°,∠PBC=35°,他很想知道∠APB与∠ACB的数量关系,你能告诉他吗?
说明理由.12.已知:如图,直线MN⊥PQ于点C,△ACB是直角三角形,且∠ACB=90°,斜边AB交直线PQ于点D,CE平分∠ACN,∠BDC的平分线交EC的延长线于点F,∠A=36°.(1)如图1,当AB∥MN时,求∠F的度数.(2)如图2,当△ACB绕
C点旋转一定的角度(即AB与MN不平行),其他条件不变,问∠F的度数是否发生改变?请说明理由.713.一副直角三角板叠放如图①,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC绕顶点A顺时针旋转角α(α=∠BAD且0°<α<180°),使两块三角板至少有一组对应边(
所在的直线)垂直.(1)如图②,α=°时,BC⊥AE;(2)请你在下列备用图中各画一种符合要求的图形,计算出旋转角α,并用符号表示出垂直的边.14.如图①,AB、CD是两条射线,P为夹在这两条射线之间的一点,连PA和PC,作∠PAB和∠PCD的平分线相交于点Q.(1)旋转射线AB,使AB∥CD,
并调整点P的位置,使∠APC=180°,如图②,请直接写出∠Q的度数;(2)当AB∥CD时,再调整点P的位置如图③,猜想并证明∠Q与∠P有何等量关系;(3)如图④,若射线AB,CD交于一点R,其他条件不变,猜想∠P、∠Q和∠R这三个角之间满足什么样的等量关系?并证明你的结论.815.将一副
直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.(1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠A
OB;②试说明OA∥CD(要求书写过程);(2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.16.将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.(1)如图1所示,边OA与OC重合,此时,AB∥
CD,则∠BOD=;(2)三角板△COD的位置保持不动,将三角板△AOB绕点O顺时针方向旋转,如图2,此时OA∥CD,求出∠BOD的大小;(3)在图2中,若将三角板△AOB绕点O按顺时针方向继续旋转,在转回到图1的过程中,还存在△AOB中的一边与CD平行的情况,请针对其中一种情况,画出图形,
并直接写出∠BOD的大小.917.已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图
2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中
的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.18.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°
的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.19.将一副三角板的直角重合放置,如图1所示,10(1)图1中∠BEC的度数为(2)三角板△A
OB的位置保持不动,将三角板△COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角板△COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请
你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.20.取一副三角尺按图1拼接,固定三角尺ADC.(1)在图1中,连接BD,计算∠DBC+∠BDC=;(2)将三角尺ABC绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC1,试问:①当α=时,能使AB∥C
D;②当α=45°时,∠DBC1+∠CAC1+∠BDC=;③当0°<α≤45°时,如图2所示,连结BD,探寻∠DBC1+CAC1+∠BDC的值的大小变化情况,并给出你的证明.