【文档说明】河北省张家口市2020-2021学年高一上学期名校联考(期中)考试数学答案.pdf,共(4)页,222.420 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-2a76582a42fe85276825b24f3bfe48c9.html
以下为本文档部分文字说明:
高一数学第1页2020-2021学年第一学期阶段测试卷高一数学参考答案1-5ABDBD6-7CB8.C【解析】23,abab326ab,236223232abab9.AD10.AB11.AD【解析】设xnr
,其中n为x的整数部分,r为小数部分,即xn,显然A正确,1.51.531.51.52,B选项错误,1.51.521.51.51C选项错误,若102r时12,22222xxnnnxnrn
,若112r,112122xxnnrn,22221xnrn,故12.2xxx12.BC13.58或14.(1,0][2,3)
15.(1,1)16.15【解析】设,ab为方程2420xmx的两个根,则42ab当1,42ab时,41m;当2,21ab时,19m;当3,14ab时,11m;当6,7ab时,1m;故
1,111,1119,1941,41M有条件知A,有条件②知A是有一些成对的相反数组成的集合。所以M的4对相反数共能组成42115个不同的非空集合A。17.解:(1)由340xx的解为3,4x故3,4A当13a时3B,BA..
.................4分(2),ABBBA的子集,分如下两种情况讨论①当0a时,,BA符合题意;.................................................
.........................6分②当0a时,由10ax得1-xa,所以11-3-4aa或,解得1-3a或14a..................8分故实数a组成的集合41
,31,0C...........................................................................10分高一数学第2页18.解:(1)由115fxxx得1050xx解得
|15Axx,................................2分所以|15RAxxx或ð,又0,1,2,3,4,5,6B,所以0,5,6RABð....................................
...........................................6分(2)由,ACACA分一下两种情况讨论①C时,22aa得2a...........................................................
....................8分②C时,222125aaaa得122a..............................................
...............................11分综上12a............................................................................12分19.解:(1)0232xxx等价于
02032xxx或者02032xxx...........3分得21x或者3x..........6分225(2)4xyx,令152,,4222txtRxxt,.....................................
.........12分212tt在2t实根,0122tt即1t不在所提供的2t范围内所以函数值取不到2.20.解:当1x时,134fxx,当11x时32fxx当1x时,312f
xx;所以当1x时,fx最小值为2m..................................................................................6分(1)由
题意知,411,22222baba所以2222222241141111+15412411baababab94............
.........................10分当且仅当222241111baab时,即253a,213b等号成立高一数学第3页所以224111ab最小值为94.....................................
...........................................................................12分21.解:(1)当01t时,如图,设直线xt与OAB分别交于C、D两点,则|
|OCt,又3CDBCOCOE,||3CDt,2113()||||3222ftOCCDttt..............................................4分(2)当1
2t时,如图,设直线xt与OAB分别交于M、N两点,则||2ANt,又||||33||||1MNBEANAE,||3(2)MNt221133()23||||3(2)233(8)2222ftANMNttt
分(3)当2t时,()3ft综上所述223,0123()233,1223,2ttfttttt................................
.........12分22.解:(1)假设直角三角形两条直角边为)(10,10,yxyx,斜边长为22yx.122yxyx,2222222)12(),(2)(yxyxyxyxyx1212122
yx当且仅当222yx时取等号成立。.....................................4分(2)由直角三角形的内切圆半径222yxyxr,................................................
..............6分又221xyxy,2121)(2yxyxr2)(2)()(222222yxyxyxyx,))(221()(2222yxyxyxyxyx,.
......................................................8分高一数学第4页即))(221(1yx,222211yx.......................
...............................................10分当且仅当222yx时取等号成立。所以22321yxr该直角三角形内切圆半径r最大值是223................................
...................................................12分