【文档说明】河南省洛阳市、平顶山市、许昌市、济源市联盟2022-2023学年高三第二次质量检测文科数学试题 答案.pdf,共(7)页,314.170 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-19d28d410885797a0964b07a4cf33ab7.html
以下为本文档部分文字说明:
1平许济洛2022-2023学年高三第二次质量检测文科数学答案一、选择题:(本题共12小题,每小题5分,共60分)1.D2.A3.C4.D5.D6.B7.A8.C9.B10.B11.A12.D二、填空题(本大题共4小题,每小题5分,共20分)13.314.4315.9216.5
12三、解答题:(共70分)17.解:(1)由散点图中数据和参考数据得4.55677.565x,135y····································1分22222(1.5)36(1)300(5)1(2
6)1.5(35)25(1.5)(1)011.5b,135(25)6285a,·········5分所以y与x的线性回归方程为25285yx.·········6分
(2)将160y代入回归方程得5x,所以该跑者跑完马拉松全程所花的时间为425210分钟,········8分从马拉松比赛前3000名跑者成绩的频率分布直方图可知成绩好于210分钟的累计频率为0.0008500.0024(210200)0.064,····
····10分有006.4的跑者成绩超过该跑者,则该跑者在本次比赛获得的名次大约是0.0643000192名.········12分18.解:(1)依题意,s3sin0ccoAcAab,故sins3sinsinsinsin0CcoACAAB,则sins3sin
sinsinsin()0CcoACAAAC,········3分sins3sinsinsinsincoscossin0CcoACAAACAC,所以3sinsinsinsincos0CAAAC,2由于0π
A,所以sin0A,所以3sin1cos0CC,故2sin()16C由于0πC,则π3C.················6分(2)由题意,13sin43,24ABCSabCabV所以16.ab··················8分又
由余弦定理2222coscababC,c=4即2216,abab所以2232,ab··················10分所以4ab.··················12分19.证明:(1)连接12PP
,12OO,如图,因为11PO平面ABCD,22PO平面ABCD,所以1122//POPO,又1122POPO,所以四边形1122POOP是矩形,·········3分所以1212//PPOO,1
212=PPOO又12OO,分别为ABCD,的中点,所以12//OOAD,12=OOAD,所以12//PPAD,12=PPAD,所以四边形12PPDA是平行四边形,··········5分又对角线21=PA
DPE,所以点E为线段2PA的中点.·········6分(2)连接21PO,交EF于点N,过点1P作121PMPO于M,·········7分由题意知22PAPB,故21POAB,又11POAB,21111POPOO,211
1,POPO平面211PPO,所以AB平面211PPO,··········8分故1ABPM,又211POABO,21,POAB平面2PAB,所以1PM平面2PAB,即1PM是四棱锥1PAB
FE的高,··········9分由(1)同理可得点F为线段2PB的中点,所以1//,22EFABEFAB,3在221RtPOO△中,2125PO,则15NO,所以1=(2+4)5=352AEFBS梯形,
1111144sin2255PMPOPOM,··········11分1121142024353335PABCDPABEFVVV.··········12分20.(1)解:122(1)fxxax22221xaxaxaxxx
(0)x.··········1分当0a时,0fx,函数fx在0,上单调递增,函数fx的单调增区间为0,.··········2分当0a时,由0fx,得2ax;由0
fx,得02ax.所以函数fx的单调增区间为,2a,单调减区间为0,2a.··········4分(2)证明:因为12,xx是方程fxc的两个不等实根,由(1)知0a.不妨设120xx
,则211112(ln)xxaxxc,222222(ln)xxaxxc两式相减得2211221122112222lnlnlnlnxxxxaxaxaxaxaxxxx.所以2211221122
22lnlnxxxxaxxxx.因为02af,··········6分当0,2ax时,0fx,当x∈,2a时,0fx,要证原命题成立,只需证1222xxa即
可,即证明22112212112222lnlnxxxxxxxxxx,即证明22221212121122lnln22xxxxxxxxxx,即证明11221222ln
xxxxxx.设12(01)xttx.··········8分4令22ln1tgttt,则22211411tgttttt.··········10分因为(0,1)t,所以
0gt,gt在0,1上是增函数,故(1)0gtg,所以当0,1t时,0gt总成立.所以原题得证.·········12分21.解:(1)由题意得2a,设12PFPF,的长分别为,mn,24mna,则222221242
4cos22mncmnmncFPFmnmn222222221112bbbmnamn当且仅当mn时取等号,··············3分从而222112ba,得2234ba,23b,则椭圆的标准方程为22143xy
.···············5分(2)设1221,),,()(MxyyxN,由题意,根据椭圆的定义可得1FMN△的周长为48a,1111(||||||)42NMFSFMFNNMrr,所以114NMFrS,·
·········6分设l的方程为1xty,联立椭圆方程223412xy,可得22(43)690tyty,122643tyyt,122943yyt,11212212212112211212121111||||||||||||
||()42222NMFFFMFFNSSSFFyFFyFFyyFFyyyy222221691212()4()2434343ttttt,所以122131443NMFtrSt,······
·······10分令21tk,则1k,2331313krkkk,由函数1()3fxxx在[1,)上单调递增,则134kk,5所以330143kk,即304r故304r.·············12分22.解(1)
由M的参数方程可得22(1)(1)5xy,即22223xyxy,22cos2sin3···········2分由题设知:1l为tanyx,故1l的极坐标方程为,(R),又21ll,2l的极
坐标方程为2,(R,(0,))2.··········5分(2)记1234,,,OAOBOCOD,联立1l与M得22(cossin)3013132(cossin),3同理联立2l与M得24242[cos()sin()]2(
cossin),322·······7分222222221234||||||||2()ABBCCDDA22131324242{[()2][()2]}22040····
···10分23.解(1)由11f得:1abc,22222231113abcabc,·······2分由柯西不等式得:2
2222223111abcabc当且仅当13abc时等号成立,所以3abc.········5分6(2)由2fxaxb得:220axbaxcb,由题知:20Δ240abaacb,则2244baca
,22222222244144411212ccbacaaacacacccaaa;········7分224440acaacab,又0a,ca,则10ca,········8分令1cta,则0
t,设24022tgtttt,当0t时,0gt;·········9分当0t时,4422222221222gttttt(当且仅当2t时等号成立),222bac的最大值为222.·········1
0分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com