湖北省武汉市第四十九中2020-2021学年高一下学期5月月考数学试题含答案【武汉专题】

PDF
  • 阅读 2 次
  • 下载 0 次
  • 页数 13 页
  • 大小 402.425 KB
  • 2024-09-30 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
湖北省武汉市第四十九中2020-2021学年高一下学期5月月考数学试题含答案【武汉专题】
可在后台配置第一页与第二页中间广告代码
湖北省武汉市第四十九中2020-2021学年高一下学期5月月考数学试题含答案【武汉专题】
可在后台配置第二页与第三页中间广告代码
湖北省武汉市第四十九中2020-2021学年高一下学期5月月考数学试题含答案【武汉专题】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的10 已有2人购买 付费阅读2.40 元
/ 13
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】湖北省武汉市第四十九中2020-2021学年高一下学期5月月考数学试题含答案【武汉专题】.pdf,共(13)页,402.425 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-18d1a840c16e0a653c76cd6d9358232e.html

以下为本文档部分文字说明:

武汉市第四十九中学2020-2021学年度高一年级五月考试数学试题第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分。在每个小题给出的四个选项中,只有一个选项是符合要求的)1.已知向量1,2a,2,3b,则ab

()A.8B.4C.7D.12.在ABC△中,已知63b,6c,30C°,则a()A.6B.12C.6或12D.无解3.如图所示,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底边长均为1的等腰梯形,则这个平面图形的面积是()A.1222B

.212C.12D.224.复数cos67.5isin67.5z°°,则22zz()A.2222B.22i22C.22i22D.15.如图是一个几何体的平面展开图,其中四边形ABCD是正方形,E,F分别是PA,PD的中点,在此几何体中,给出下面四个结论:①直线BE

与直线CF是异面直线;②直线BE与直线AF异面;③直线//EF平面PBC;④平面BCE平面PAD。其中正确的有()A.①②B.②③C.①④D.②④6.在棱长为1的正方体1111ABCDABCD中,点P在线段1AD上运动,则下列命题中错误的是()A.直

线1PC和平面11AADDAAD,D所成的角为定值B.点P到平面1CBD的距离为定值C.异面直线1CP和1CB所成的角为定值D.直线CD和平面1BPC平行7.如图,在长方体1111ABCDABCD中,1ABAD,12AA,M为棱1DD上的一点,当1AMMC取最小值时,1B

M的长为()A.23B.5C.6D.38.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖膈.若三棱锥PABC为鳖臑,PA平面ABC,2PAAB,4AC,

三棱锥PABC的四个顶点都在球O的球面上,则球O的表面积为()A.8B.12C.20D.24二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求的全部选对的得5分,部

分选对的得2分,有选错的得0分)9.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当//BD平面EFGH时,下面结论正确的是()A.E,F,G,H一定是各边的中点B.G,H一定是CD,D

A的中点C.::AEEBAHHD,且::BFFCDGGCD.四边形EFGH是平行四边形或梯形10.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是()A.圆柱的体积为34RB.圆锥的侧面积为25RC.圆柱的侧面积与圆锥的表面积相等D.圆柱、圆

锥、球的体积之比为3:1:211.如图,在透明塑料制成的长方体1111ABCDABCD容器内灌进一些水(未满),现将容器底面一边BC固定在底面上,再将容器倾斜,随着倾斜度的不同,有下列四种说法,其中正确命题的是()A.水的部

分始终呈棱柱状B.水面四边形EFGH的面积为定值C.棱1AD始终与水面EFGH平行D.若1EAA,1FBB,则AEBF是定值12.如图,正方体1111ABCDABCD的棱长为1,线段11BD上有两个动点E,F,且1EF,则下列说法中正确的是()A.存在点E,F使得/

/AEBFB.异面直线EF与1CD所成的角为60°C.三棱锥BAEF的体积为定值212D.1A到平面AEF的距离为33第Ⅱ卷(非选择题)三、填空题(共20分,每道5分)13.设向量1,4a,2,34bx,若//ab,则x______,若ab,则x______

.14.若圆台的母线与高的夹角为6,且上、下底面半径之差为2,则该圆台的高为______.15.已知复数z满足1z,则2iz(其中i是虚数单位)的最小值为______.16.如图,已知棱长为2的正方体1111ABCDABCD中,点P在线段1BC上运动,给出下列结论:

①异面直线AP与1DD所成的角范围为,32;②平面1PBD平面11ACD;③点P到平面11ACD的距离为定值233;④存在一点P,使得直线AP与平面11BCCB所成的角为3。其中正确的结论是______.四、解答题(共70分,解答应写出必要的文字说明、证明过程或演算步

骤)17.已知向量1,1m,1,2n.(1)若mn,求的值;(2)若m与n的夹角为34,求的值.18.如图,PA矩形ABCD所在的平面,M、N分别是AB、PC的中

点.(1)求证://MN平面PAD;(2)求证:CDMN.19.已知四棱锥VABCD的底面是面积为16的正方形ABCD,侧面是全等的等腰三角形,一条侧棱长为211,计算它的高和侧面三角形底边上的高。20.如图,三棱锥PABC的底面是等腰直角三角形,其中2ABAC,PA

PB,平面PAB平面ABC,点E,F,M,N分别是AB,AC,PC,BC的中点.(1)证明:平面EMN上平面PAB;(2)当PF与平面ABC所成的角为3时,求二面角MENB的余弦值.21.在斜三棱柱111ABCABC中,ABAC,1BC平面ABC,E,F分

别是1AB,11AC的中点.(1)求证://EF平面11BCCB;(2)已知2ABAC,斜三棱柱111ABCABC的体积为8,求点E到平面11CCB的距离.22.在四棱锥PABCD中,底面ABCD是菱形,ACBDO.(

Ⅰ)若ACPD,求证:AC平面PBD;(Ⅱ)若平面PAC平面ABCD,求证:PBPD;(Ⅲ)在棱PC上是否存在点M(异于点C)使得//BM平面PAD,若存在,求PMPC的值;若不存在,说明理由.武汉市第四十九中学2020-2021学年度高一年级五月考试数学试题参考答案1.A2.C3.D4

.C5.B6.A7.D8.C9.CD10.BD11.ACD12.BCD13.47614.2315.116.②③17.(1)1;(2)0或1.解:(1)因为mn,所以,1210mn,解得1;(2)由已知可得2m,2214n

,由平面向量数量积的定义可得cos4mnmn,即22212142,整理得21521,解得0或1,∵10,所以0或1

都符合题意.18.解析:(1)取PD的中点E,连接AE,EN,∵N为中点,∴EN为PDC△的中位线,∴1//2ENCD又∵//CDAB,∴//ENAM∴四边形AMNE为平行四边形,∴//MNAE又∵MN平面PAD,AE平面PAD,∴//

MN平面PAD(2)∵PA平面ABCD,CD平面ABCD,∴PACD∵ADCD,DDPAA,∴CD平面PAD∴CDPD取CD的中点F,连接NF,MF,∴//NFPD∴CDNF又∵CDMF,NFMFF∴CD平面MNF∵MN平面MNF∴MNCD19.四棱锥的高为6,侧

面三角形底边上的高为210解:如下图所示:作VO为四棱锥VABCD的高,作OMBC于点M,则M为BC的中点.连接OB,则VOOM,VOOB.∵底面正方形ABCD的面积为16,∴4BC,2BMCM.则22222222OBBMO

M.又211VB,在RtVOB△中,由勾股定理,可得2222211226VOVBOB.在RtVOM△中,由勾股定理,可得222262210VMVOOM,即四棱锥的高为6,侧面三角

形底边上的高为210.20.(1)证明见解析;(2)77(1)证明:由题意可得,ABAC,点EN分别是AB,BC的中点,故//ENAC,故ENAB,平面PAB平面ABC,交线为AB,故EN平面PAB又∵EN在平面EMN内,故平面EMN

平面PAB(2)连结PE,由PAPB,点E是AB的中点,可知PEAB再由平面PAB平面ABC,可知PE平面ABC,连结EF,可知PFE就是直线PF与平面ABC所成的角,于是tan3PEPFEEF,22336PEEFAEAF

法一:分别以EB,EN,EP为x,y,z轴建立如图所示空间直角坐标系,则0,0,0E,0,1,0N,1,2,0C,0,0,6P,16,1,22M,0,1,0EN,16,1,22EM设平面ME

N的一个法向量为,,nxyz,则00nENnEM得160220xyzy取6x,则1z,即平面MEN的一个法向量为6,0,1n,又平面ABC的一个法向量为10,0,1n,于是1117cos77nnMENBn

n注意到二面角MENB是钝角,所以二面角MENB的余弦值为77.法二:取PA的中点Q,连接EQ,MQ,则//MQEN,得点Q在平面EMN内.又因为平面PAB平面ABC,EQ在平面ABC内的射影就是EA,由E

NAB,得ENEQ,故二面角MENB的平面角为QEBQEA,PAB△是等腰三角形,点Q,E分别是PA,AB的中点,故QEAPBA.于是2217cos716BEPBAPB所以7coscos7QEBQEA所以二面角MENB的余弦值为

77.21.(1)证明见解析;(2)22.【详解】(1)连结1AB,1BC,由三棱柱111ABCABC知,四边形11ABBA为平行四边形,因为E,F分别是1AB,11AC的中点,即EF为中位线,所以1

//EFBC且112EFBC,因为EF平面11BCCB,1BC平面11BCCB,所以//EF平面11BCCB.(2)因为1BC平面ABC,所以1BC为三棱柱111ABCABC的高,又因为2ABAC,且ABAC,所以12222ABCS△,而11118ABCABCABCVSB

C△,所以14BC,因为//EF平面11BCCB,所以点E到平面11CCB的距离等于点F到平面11CCB的距离,由等体积法得1111FCCBCCBFVV即111111133CCBCBFSdSBC△△,所以22d,即点E到平面11CCB的距离

为22.22.(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)不存在.【详解】(Ⅰ)因为底面ABCD是菱形所以ACBD.又因为ACPD,PDBDD,所以AC平面PAD.(Ⅱ)因为平面PAC平面ABCD,平面PAC平面ABCDAC,ACBD,BD面PAC所以BDPO.

因为底面ABCD是菱形所以BODO所以PBPD(Ⅲ)不存在.下面用反证法说明.假设存在点M(异于点C)使得//BM平面PAD在菱形ABCD中,//BCAD,因为BM平面PAD,AD平面PAD,所以//BC平面PAD.BCBMB,所以平面

//PBC平面PAD.而平面PBC与平面PAD相交,矛盾.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?