2024年新高考数学一轮复习题型归纳与达标检测 第34讲 等差数列及其前n项和(讲)(原卷版)

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 5 页
  • 大小 303.119 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2024年新高考数学一轮复习题型归纳与达标检测 第34讲 等差数列及其前n项和(讲)(原卷版)
可在后台配置第一页与第二页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第34讲 等差数列及其前n项和(讲)(原卷版)
可在后台配置第二页与第三页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第34讲 等差数列及其前n项和(讲)(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的2 已有1人购买 付费阅读1.60 元
/ 5
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第34讲 等差数列及其前n项和(讲)(原卷版).docx,共(5)页,303.119 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-09caa7f0b9e22e63b517214d4ceb97d5.html

以下为本文档部分文字说明:

第34讲等差数列及其前n项和(讲)思维导图知识梳理1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为an+1-an=d(n∈N*,d为常数).(2)等

差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:an=a1+(n-1)d=nd+(a1-d)⇒当d≠0时,an是关于n的一次函数

.(2)前n项和公式:Sn=n(a1+an)2――→an=a1+(n-1)dSn=na1+n(n-1)2d=d2n2+a1-d2n⇒当d≠0时,Sn是关于n的二次函数,且没有常数项.[常用结论]已知{an

}为等差数列,d为公差,Sn为该数列的前n项和.(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).(2)在等差数列{an}中,当m+n=p+q时,am+an=ap+aq(m,n,p,q∈N*).特别地

,若m+n=2p,则2ap=am+an(m,n,p∈N*).(3)ak,ak+m,ak+2m,…仍是等差数列,公差为md(k,m∈N*).(4)Sn,S2n-Sn,S3n-S2n,…也成等差数列,公差为n2d.(5)若{a

n},{bn}是等差数列,则{pan+qbn}也是等差数列.(6)若{an}是等差数列,则Snn也成等差数列,其首项与{an}首项相同,公差是{an}公差的12.(7)若项数为偶数2n,则S2n=n(a1+a2n)=n(an+an+1);S偶-S奇

=nd;S奇S偶=anan+1.(8)若项数为奇数2n-1,则S2n-1=(2n-1)an;S奇-S偶=an;S奇S偶=nn-1.(9)在等差数列{an}中,若a1>0,d<0,则满足am≥0,am+1≤0的项数m使得Sn取得最大值Sm;若a1<0,d>

0,则满足am≤0,am+1≥0的项数m使得Sn取得最小值Sm.题型归纳题型1等差数列的基本运算【例1-1】(2020春•新华区校级期末)在等差数列{}na中,若31a=−,711a=,则公差(d=)A.5

2B.52−C.3D.3−【例1-2】(2020春•黄冈期末)若等差数列{}na满足792aa+=,105a=−,则数列{}na的首项1(a=)A.20B.3−C.22D.23−【例1-3】(2020春•乐山期末)已知等差数列{}na中,12a=−,公差32d=,则2a与6a的等差中项

为()A.52B.72C.112D.6【跟踪训练1-1】(2020春•合肥期末)若{}na为等差数列,nS是数列{}na前n项和,11a=,535S=,则该数列的公差d为()A.21B.2C.3D.4【跟踪训练1-2】(2020春•

资阳期末)已知等差数列{}na的公差为d,24a=,410a=,则(d=)A.2B.3C.6D.9【跟踪训练1-3】(2020春•常德期末)等差数列{}na中,38a=,1029a=,则6(a=)A.14B.17C.20D.23【名师指导】等差数列基本运算的常见类型及

解题策略(1)求公差d或项数n.在求解时,一般要运用方程思想.(2)求通项.a1和d是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n项和.利用等差数列的前n项和公式直接求解或利用等差中项间接求解.题型

2等差数列的判定与证明【例2-1】(2020•山东模拟)已知数列()*113nnnnaaanNa++=−满足,且113a=.()I求证:数列1{}1na−是等差数列,并求na;()II令*22()(2)nnbnNna=+,求数列{}nb的前n项和nT.【跟踪训练2-1】(2020春

•天心区校级期末)已知等差数列的前三项依次为a,4,3a,前n项和为nS,且110kS=.(1)求a及k的值.(2)已知数列{}nb满足nnSbn=,证明数列{}nb是等差数列,并求其前n项和nT.【名师指导】等差数列的四个判定方法(1)定义法:证明对任意

正整数n都有an+1-an等于同一个常数.(2)等差中项法:证明对任意正整数n都有2an+1=an+an+2后,可递推得出an+2-an+1=an+1-an=an-an-1=an-1-an-2=…=a2-

a1,根据定义得出数列{an}为等差数列.(3)通项公式法:得出an=pn+q后,得an+1-an=p对任意正整数n恒成立,根据定义判定数列{an}为等差数列.(4)前n项和公式法:得出Sn=An2+Bn后,根据Sn,an的关

系,得出an,再使用定义法证明数列{an}为等差数列.题型3等差数列的性质及应用【例3-1】(2020春•赤峰期末)在等差数列{}na中,123aa+=,567aa+=,则910(aa+=)A.8B.9C.10D.11【例3-2】(2020春•南岗区校级期末)

设等差数列{}na的前n项和为nS,若39S=,972S=,则6(S=)A.27B.33C.36D.45【例3-3】(2020春•运城期末)设等差数列{}na满足:13a=,公差(0,10)d,其前n

项和为nS.若数列{1}nS+也是等差数列,则51nnSa++的最小值为()A.3B.2C.5D.6【跟踪训练3-1】(2020春•上高县校级期末)设等差数列{}na前n项和为nS,等差数列{}nb前n项和为nT,若20121nnSnTn−

=−,则33(ab=)A.595B.11C.12D.13【跟踪训练3-2】(2020春•安徽期末)在等差数列{}na中,824a=,168a=,则24(a=)A.24−B.16−C.8−D.0【跟踪训练3-3】(2020春•蚌埠期末)已知等差数列{}na的前n项

和为nS,等差数列{}nb的前n项和为nT,若211nnSnTn−=+,则55(ab=)A.1911B.1710C.32D.75【跟踪训练3-4】(2020春•马鞍山期末)在数列{}na中,若516nan=−,则此数列前n项和的最小值为()A.11−B.17−C.18−D.3

【跟踪训练3-5】(2020春•沙坪坝区校级期末)已知等差数列{}na,其前n项和为nS,若3412aa+=,39SS=,则nS的最大值为()A.12B.24C.36D.48【跟踪训练3-6】(2020•哈尔滨模拟)等差数列{}na,{}nb的前n项和分别为nS,nT,若3535ab=,则59

ST=.【跟踪训练3-7】(2020•昆山市模拟)已知{}na和{}nb均为等差数列,若276ab+=,459ab+=,则63ab+的值是.【名师指导】1.等差数列的性质(1)项的性质:在等差数列{an

}中,am-an=(m-n)d⇔am-anm-n=d(m≠n),其几何意义是点(n,an),(m,am)所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{an}中,Sn为其前n项和,则①S2n=n(a1+a2n)=…=n(an+an+1)

;②S2n-1=(2n-1)an;③Snn是首项为a1,公差为d2的等差数列.2.求等差数列前n项和Sn及最值的2种方法(1)函数法:利用等差数列前n项和的函数表达式Sn=an2+bn,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法①当a1>0

,d<0时,满足am≥0,am+1≤0的项数m使得Sn取得最大值为Sm;

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?