【文档说明】2023届吉林省吉林市普通高中高三下学期第四次调研测试 数学答案.pdf,共(9)页,394.816 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-08f40c023434eda6737da7273251ec9c.html
以下为本文档部分文字说明:
高三数学试题答案第1页(共8页)吉林市普通中学2022—2023学年度高三毕业年级第四次调研测试数学试题参考答案一、单项选择题:本大题共8小题,每小题5分,共40分.12345678BACDAABB二、多项选择题:本大题共4小题,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分
.教学提示:4.选项D,可以参考人教A版选择性必修三第82~81页,探究与发现《二项分布的性质》,研读如何利用分布列的表达式研究kP的增减变化及最大值,并掌握当Pn)1(为正整数及非正整数时k的取值情况.5.①针对函数x
xln)xf(,了解函数图象的变化情况(指导学生阅读人教A版选择性必修二第68页例4和第89页例4),体会极值点左侧图象“陡峭”,右侧图象“平缓”,如图所示:)3()3(2eff②利用极值点偏移,对于函数xxlnxf)(,当)()(
21xfxf且21xx时,221exx.设)()3(02xfef且320ex则2203eex)3()3()3()(3200feffxfx补充:程度较好的学生熟练掌握六种经典函数图象(
单调性、极值点、零点):xxxexy,xlnxy,xey,xxlny,xey,xlnxy7.法一:由杨辉三角中观察得可得2010631.推广,得到3221242322nnCCCCC即322)1(243232221nCnn由
题意,2021层“刍童垛”小球的总个数为)1(22023202254433232024CS法二:指导学生阅读人教A版选择性必修二第42~43页,阅读与思考《中国古代数学家求数列和的方法》.可以结合人教A版选择性必修
三39~42页数学探究《杨辉三角的性质与应用》,探索堆垛问题以及高阶等差数列的求和方法.由已知顶层6个圆球,设为321a,向下每边依次加1个,第n层23)2()1(2nnnnan个.利用分组求和法,得到n层“刍童垛”小球的总个数为91011
12ACADADABC高三数学试题答案第2页(共8页)2223)3)(2)(1(23]65)[1(222)1(236)12)(1(2)21(3)21(23)2232()2131(232222222
nnCnnnnnnnnnnnnnnnnnS即2021层“刍童垛”小球的总个数为2232024CS.11.统计数据来源于国家统计局网站,选项的命制主要根据网站公布数据的解释说明.为使学生深刻体会数学的实用性,结合本题的实
际特点,选择恰当的统计图表对数据进行可视化描述,体会合理使用统计图表的重要性.三、填空题:本大题共4小题,每小题5分,共20分.其中第16题的第一个空填对得2分,第二个空填对得3分.13.314.115.2116.6;]
33643332[,(注:可以用不等关系表示)教学提示:16.过P作PH平面ABC垂足为H,则3060PBH,PAH333BHPHPBHtan,AHPHPAHtanAHBH3H点轨迹是半径
为3的圆(阿波罗尼斯圆),即轨迹长为6易知]3432[3]42[,AHPH,AH,33643332316)8421(31,PHPHV四、解答题17.【解析】(Ⅰ)由
bacAsin26)(,得:acAcosbAsinb3由正弦定理,得AsinBAsinAsinCsinBsinAcosBsinAsin)(3整理得:AsinBcosAsinBsinAsin3因为0Asin,所以13BcosBsin········
···························································3分两边平方得,消Bsin,得0122BcosBcos解得:21Bcos或1Bcos(舍去)又)0(,B,所以3B·······
·················································································5分(也可化简为21)6(Bsin求得B)(Ⅱ)法一:高三数学试题答案第3页(共8页)因为212222
acbcaBcos且332Bsinb所以:acca922··························································································
···7分所以9439322)()(caacca所以6ca,当且仅当3ca时,取“”号所以△ABC的周长9cba,即当3ca时,△ABC的周长最大值为9···················
···········································10分法二:设△ABC的外接圆半径为R,因为RCsincBsinbAsina2,所以AsinAsinRa322,32BsinR
b,AsinAcosAsinABsinCsinCsinRc3333232322)()(······7分所以△ABC的周长AsinAcosAsincba333323333AsinAcos366)(Asin因为
)(320π,A,所以)(6566π,πA当3A时,)(6Asin的最大值1,此时△ABC的周长的最大值为9························10分(注:没有写清取等条件扣1分)18.【解析】(Ⅰ)对于有放回抽检,每次抽到混合动力汽车的概率为41,且各次抽检结果是
独立的,设1X为有放回抽检的混合动力汽车的台数,则)41,2(~1BX,1X可取2,1,0,169)43()0(21XP;834143)1(121CXP;161)41()2(21XP.1X的分布列如下:1X012P16983161则211
6128311690)(1XE········································································4分对于不放回抽检,各次抽检的结果不独立,设2X为不放回抽检
的混合动力汽车的台数,则2X服从超几何分布,2X可取2,1,0,476267)0(21202902CCXP;476180)1(21201901302CCCXP;47629)1(21202302CCXP.2X的分布列如下:2X012P4762674761804762
9则2147629247618014762670)(2XE.·······························································8分注:也可按照下面步骤作答.高三数学试题答案第4页(共8页)1X的分布列为2,1,0,)41(
)43()(221kCkXPkkk,21412)(1XE.2X的分布列为2,1,0,)(2120290302kCCCkXPkk,21120302)(2XE.(Ⅱ)样本中混合动力汽车的比例1010Yf是一个随机变量,根据参考数据,有放回抽取:86556
0146000250280281570187710)41()150250(10.....YP.|.f|P不放回抽取:881400147010261340290510182540)41()150250(10.....YP.|.f|P··········
···········································································································10分因为88
140.086556.0,所以,在相同的误差限制下,采用不放回抽取估计的结果更可靠.······························12分(注:(Ⅱ)问,可以参考人教A版选择性必修三第79页例6,分别就放
回抽样和不放回抽样,用样本中的某类品的比例估计总体中这类品的比例,定量地比较估计效果,用概率的方法解释直观常识。对用同一抽取模型,两个分布的均值相同,从两种分布的概率分布看,或者从方差的大小比较(超几何分布的方差较小),都反应超几何分布更集中于均值附近.)
19.解析:(Ⅰ)CEAB||四边形ABCE是平行四边形BC//AE,AE平面PAE,BC平面PAE//BC平面PAE···································································
·······························2分BC平面PBC,平面PAE平面lPBC.l//BC·········································4分(Ⅱ)法一:1|E
B||EC||EP||EA|,323EA,EC,EA,EP设EC,EP,)3(,点T到直线EB的距离22)(EBETETd····················
·······································7分22)](2[)2(ECEAECEPECEP2]1)21(112111[)211(21ECEPECEP2)1()22(21ECEPE
CEP2)(121ECEP2121cossin21·····················································10分)3(,]10(,sin]210(,d即点T到直线EB的距离的取值范围是]
210(,······························································12分法二:取AE中点O,连接OB,OPABE是等边三角形OEOB以O为原点,OB,OE所在直线为
x轴,y轴,过O作平面ABCE的垂线为z轴,建立空间直角坐标系xyzO,如图所示设)0(POB,则)23230(sin,cos,P,)0231(,,C,)0021(,,E,)0230(,,B高三数学试题答案第5页(共8页))43)1(
4321(sin,cos,T)43)1(43(0sin,cos,ET,)02321(,,EB)1(83)1(2343coscosEBET·············································
················································································6分点T到直线EB的距离22)(EBETETd··········································
·················7分222)]1(83[)43()]1(43[cossincos22)1(4143sincos523832coscos···································
···········10分11cos当31cos时,21maxd;当1cos时,0d即点T到直线EB的距离的取值范围是]210(,·························
·····································12分法三:提示:也可设)430(2t,t,P整理得16154343212ttd当63t时,21maxd;当23t时,0d(命题意图及教学建议:关注投影向量概念及意义的教学,体
会课标中“能用向量方法解决点到直线、点到平面、相互平行直线、相互平行的平面的距离问题和简单的夹角问题”的这一要求.)20.【解析】(Ⅰ)令1n时2221212aaaS01a22a································
····································································1分221nnSS2n时221nnSS,相减得nnaa21·····················
·················3分,n,n,,ann21201·································································································4
分(Ⅱ)由(Ⅰ)知2212)(nalogbnn······································································5分令nnnnnb
ac221,则1223222232221232122)1(222122232221nnnnnnnnTnccccT相减得:1232122)12(252321
nnnnnT············································7分令1323212)12(2)32(232122)12(252321
nnnnnnnGnG相减得:xOylz高三数学试题答案第6页(共8页)62)32(2)12(21)21(222)12()222(222)12(2222222111131321321
nnnnnnnnnnnnG62)32(1nnnG········································································
················10分121262)32(nnnnnT62)32(12nnnnT·······················································
···························12分21.【解析】(Ⅰ)11222byx,a故当直线l过)02(,与双曲线C有且仅有一个公共点时,l应与C的渐近线平行设直线)2(xbyl:,即02by
bx,则点B到直线l的距离为2212bb,1b即双曲线C的标准方程为:122yx·······································································4分(或设2myxl:,由点B到直线l的
距离为22112md,得1m1b)(Ⅱ)(ⅰ)由题可知,直线l斜率不为0设直线)()(22211y,xB,y,xA,myxl:由2122myxyx得:034)1(22myym)01(2m01242
m成立1314221221myy,mmyy)(432121yyymy···························································································6分11222111
xyk,xyk121221211221121122123)1()3()1()1(11yymyyymymyymyyxyxyxyxykk343414943)(433)(432121121221yyyyyyyyyy所以存在实数3
λ,使得12kk成立.···································································9分(注:请老师阅卷时注意非对称问题方法不唯一)(ⅱ)直线)1(1xkyAP:,直线
)1(:2xkyBQ联立得:2131112xkkxx所以直线AP和BQ交点E的轨迹方程为:21x························································12分22.【解析】(Ⅰ)
法一:0)()(xmmxlnxxf在)0(,上恒成立高三数学试题答案第7页(共8页)0xmmxln在)0(,上恒成立设221)()(xmxxmxxg,xmmxlnxg①当0m时,0)(xg恒成立)(xg在)0(,上单调递增,且0)1(g
)10(,x时,0)(xg不符合题意,舍去②当0m时,令0)(xg,则mx;令0)(xg,则mx0.)(xg在)0(m,上单调递减,在)(,m上单调递增01)()(mmlnmgxgmin························
··················································2分设1)(xxlnxh,xxxh1)(令0)(xh,则10x;令0)(xh,则1x.)(xh在)10(,上单调递增,在)1(,上单调递减0)1()(
hxhmax,即当0)(mh时,1mm的取值范围是:1m························································································4分法二:0)(0)1(xff,在)0(,上
恒成立)1(f是)(xf上最小值,也是极小值01)1(1)(mfmxlnxf,即1m···················································2分当1m时,xl
nxfxxlnxxf)(1)(,令0)(xf,则1x;令0)(xf,则10x)(xf在)10(,上单调递减,在)1(,上单调递增即0)1()(fxfmin,满足:0)(xf在)0(,上恒成立1
m·················································································································4分法三:①当1x时,00)(xf恒成立
,Rm···················································1分②当1x时,1xxlnxm恒成立,设)(xu1xxlnx,)(xu2)1(1xxlnx设)(xvxlnx1,)(xv011x)(x
v在)1(,上单调递增,0)1()(vxv,0)(xu,)(xu在)1(,上单调递增当1x时,0xlnx,01x,)(xu1xxlnx为“00”型由洛必达法则得)(1xulimx1xli
m1xxlnx1xlim111xln当1x时,1)(xu,即1m····························································
·················2分③当10x时,1xxlnxm恒成立,设)(xu1xxlnx,)(xu2)1(1xxlnx设)(xvxlnx1,)(xv011x)(xv在)10(,上单调递减,0)1()(vxv
,0)(xu,)(xu在)10(,上单调递增当1x时,0xlnx,01x,)(xu1xxlnx为“00”型由洛必达法则得)(1xulimx1xlim1xxlnx1xlim111xln高三数学试题答案第8页(共8
页)当10x时,1)(xu,即1m综上,m的取值范围是:1m·················································································4分(
Ⅱ)由(Ⅰ)知,0)(xh,即1xxln在)0(,上恒成立(当且仅当1x时取等)令nx311,则nnln31)311(·········································
·····································6分21)311(21311)311(31313131)311()311()311(2121nnn
nlnlnln即eken,)311()311)(311(21又13111且Zk,k的最小值为2·········································
·······················8分(注:重新构造新函数得出nnln31)311(也可以)(Ⅲ)不等式1xxln在)0(,上恒成立(当且仅当1x时取等)令202311x,则20231)202311(ln,即e1)20242023(2023··········
···························10分令202411x,则20241)202411(ln,即e1)20242023(2024故20232024)20242023(1)20242023(e······
···········································································12分获得更多资源请扫码加入享学资源网微信公众号www.
xiangxue100.com