【文档说明】广东省湛江市第二十一中学2020-2021学年高二下学期期中考试数学试卷含答案.doc,共(13)页,1.110 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-06de35e948da60c2a72a2bf6d7d197ea.html
以下为本文档部分文字说明:
12020-2021学年第二学期湛江市第二十一中学期中考试高二数学时间:120分钟满分150分学校:___________姓名:___________班级:___________考号:___________一、单选题(本题共8小题,每小题5分,共40分.在每小题给出
的四个选项中,只有一项符合题目要求.)1.已知集合2823Axxx=−−,2430Bxxx=−+,则AB=()A.(),3−B.()1,2C.()2,3D.()1,32.复数z满足(2)|34|zii−=+,则z=()
A.2i+B.2i−C.105i+D.105i−3.国际冬奥会和残奥会两个奥运会将于2022年在北京召开,这是我国在2008年成功举办夏季奥运会之后的又一奥运盛事.某电视台计划在奥运会期间某段时间连续播放5个广告,其中3个不同的商业广
告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能相邻播放,则不同的播放方式有()A.120种B.48种C.36种D.18种4.在等差数列na中,2122aa+=−,242aa+=,则5a=()A.3
B.4C.5D.75.函数sin()xxxfxe−=的图像大致是()A.B.C.D.6.“1a-”是“函数1()lnfxxaxx=++在)1,+上为单调函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件27.直线l与双曲线2
222:1(0,0)xyEabab−=的一条渐近线平行,且l过抛物线2:4Cyx=的焦点,交C于A,B两点,若||6AB=,则E的离心率为()A.2B.3C.5D.528.已知()fx是定义在(,0)(0,)−+上的
奇函数,()fx¢是()fx的导函数,()10f,且满足()()ln0fxfxxx+,则不等式(1)()0xfx−的解集为()A.(1,)+B.()0,1C.(,1)−D.(,0)(1,)−+二、多选题(本
大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知圆锥曲线C:2214xyb−=,若三个数1,2b,7成等差数列,则C的离心率为()A.12B
.62C.22D.210.下列说法中正确的是()A.设随机变量X服从二项分布16,2B,则()5316PX==B.已知随机变量X服从正态分布()22,N且()40.9PX=,则()020.4PX=C.
()()2323EXEX+=+;()()2323DXDX+=+D.已知随机变量满足()0Px==,()11Px==−,若102x,则()E随着x的增大而减小,()D随着x的增大而增大11.函数
()()()2sin0,0fxx=+的图象如图,把函数()fx的图象上所有的点向右平移6个单位长度,可得到函数()ygx=的图象,下列结论正确的是()A.3=3B.函数()gx的最小正周期为C.函数()
gx在区间,312−上单调递增D.函数()gx关于点,03−中心对称12.关于函数()2lnfxxx=+,下列判断正确的是()A.2x=是()fx的极大值点B.函数()yf
xx=−有且只有1个零点C.存在正实数k,使得()fxkx成立D.对两个不相等的正实数1x,2x,若()()12fxfx=,则()121ln42++fxx.三、填空题(本大题共4小题,每小题5分,共20分)13.已知m,n均为正数,()1,am=,()2,1bn=−,且b
a∥,则1mmn+的最小值为____________.14.()412122xxx−−的展开式中3x的系数为___________.15.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为,则()E=______.1
6.已知(2,0),(0,1)AB是椭圆22221xyab+=的两个顶点,直线(0)ykxk=与直线AB相交于点D,与椭圆相交于,EF两点,若6EDDF=,则斜率k的值为______.四、解答题(解答应写出文字说明,证明过程或演算步骤,
本大题共6小题,共70分)17.(本题满分10分)ABC的内角,,ABC的对边分别为,,abc.已知222sinsinsinsinsinBACAC−−=.(1)求B;(2)若3b=,当ABC的周长最大时,求它的面积.418.(本题满分12分
)已知数列na满足121nnaa−=+(*nN,2n),且11a=,1nnba=+.(1)证明:数列nb是等比数列;(2)求数列nnb的前n项和nT.19.(本题满分12分)如图,在等腰梯形ABCD中,//ABC
D,2243ABCDAD===,将ADC沿着AC翻折,使得点D到点P,且26PB=.(1)求证:平面APC⊥平面ABC;(2)求直线AB与平面BCP所成角的余弦值.20.(本题满分12分)某市教育科学研究院为了对今后所出试题的难
度有更好的把握,提高命题质量,对该市高三联考理综试卷的得分情况进行了调研.从全市参加考试的考生中随机抽取了100名考生的理综成绩,将数据分成7组:[160,180),[180,200),[200,22
0),[220,240),[240,260),[260,280),[280,300].并整理得到如图所示的频率分布直方图.(1)根据频率分布直方图,求直方图中x的值;(2)用频率估计概率,从该市所有高三考生的理综成
绩中随机抽取3个,记理综成绩位于区间[220,260)内的个数为y,求y的分布列及数学期望E(y);(3)若变量S满足P(μ﹣σ<S≤μ+σ)≈0.6827,且P(μ﹣2σ<S≤μ+2σ)≈0.9545,则称S近似服从正态分布N(μ,σ2),若该市高三考生的理综成绩近似
服从正态分布N(225,225),则给予这套试卷好评,否则差评,试问:这套试卷得到好评还是差评?21.(本题满分12分)已知椭圆C:22221xyab+=(0ab)的左焦点为()2,0−,且椭圆C经过点()0,1P,直线21ykxk=+−与椭圆C交于A,B两点(异于点P).(1)求椭圆C
的方程;(2)证明:直线PA与直线PB的斜率之和为定值,并求出该定值.522.(本题满分12分)已知函数()()lnfxxaxa=−R.(1)若()fx存在极值,求a的取值范围;(2)当1a=−时,求证:()1xf
xxe−.6参考答案一、单项选择题1.A2.B3.C4.C5.B6.A7.B8.D8【详解】()()1[()ln]ln0fxxfxfxxx=+,()()lngxfxx=在()0,+为减函数,而()10g=,∴在()0,1上ln0x,()0gx;
在()1,+上ln0x,()0gx;而(1)0f,∴在(0,+)上()0fx,又函数()fx为奇函数,∴在(),0-?上()0fx.不等式()()10xfx−等价于()10xfx或()10
xfx,∴()(),01,x−+.故选:D.二、多项选择题9.BC10.ABD11.BC12.BD12、【详解】A.函数的定义域为()0,+,函数的导数()22212xfxxxx−=−+=,∴在()0,2上,()0fx,函数单调递减,()2,
+上,()0fx,函数单调递增,∴2x=是()fx的极小值点,即A错误;B.()2lnyfxxxxx=−=+−,∴22221210xxyxxx−+−=−+−=,函数在()0,+上单调递减,且()112ln1110f−=+−=,()221ln22ln210f−=+−=−,∴
函数()yfxx=−有且只有1个零点,即B正确;C.若()fxkx,可得22lnxkxx+,令()22ln+=xgxxx,则()34lnxxxgxx−+−=,令7()4lnhxxxx=−+−,则()lnhxx=−,∴在()0,1x
上,函数()hx单调递增,()1,x+上函数()hx单调递减,∴()()10hxh,∴()0gx,∴()22lnxgxxx=+在()0,+上函数单调递减,函数无最小值,∴不存在正实数k,使得()fxkx恒成立,即C不正确;D.令()0,2t,则()20,2t−,22t+
,令()()()()2222ln222=+−−=++−−+−gtftftttt()242ln2ln42+−=+−−ttttt,则()()()()()222222222448222416424244−−−−++−−=+=+=+−−−−ttttttgtttttt()22280
4−−tt,∴()gt在()0,2上单调递减,则()()00gtg=,令12xt=−,由()()12fxfx=,得22xt+,则12224xxtt+−++=,当24x时,124xx+显然成立,∴
对任意两个正实数1x,2x,且21xx,若()()12fxfx=,则124xx+,所以()()1214ln42+=+fxxf.故D正确.故选:BD.三、填空题13、414、4015、9716、38或2316【详解】由题可知,该椭圆的方程为2214xy+=,直线AB
,EF的方程分别为22,xyykx+==,设()()()001122,,,,,DxyExkxFxkx,其中12xx,联立方程()222211444xykxykx+=+==,故212214xx
k=−=+,由6EDDF=,知()()01200212215106,677714xxxxxxxxk−=−=+==+,由点D在直线AB上,则00022212xkxxk+==+,8所以221022421225603714kkkkk−
+===++或38故答案为:23或38四、解答题17、【详解】(1)由正弦定理得:222bacac−−=,······················2分2221cos22acbBac+−==−,·····························
·4分()0,B,23B=;··································5分;(2)由余弦定理得:()()222222cos29bacacBacacacacac=+−=+−+
=+−=,···········6分()2292acacac+=+−(当且仅当ac=时取等号),·················8分23ac+,当3ac==时,ABC周长取得最大值,·············9分此时13333sin2224ABC
SacB===.································10分18、(Ⅰ)证明:∵当2n时,121nnaa−=+,······························1分∴()1112221nnnaaa−−+=+=+.······················
··················2分∴12nnbb−=,1112ba=+=.···············································3分∴数列nb是以2为首项,公比为
2的等比数列.···························4分(Ⅱ)解:1122nnnbb−==··············································5分∵()231122232122nnnTnn−=++++−
+,①····················7分∴()23412122232122nnnTnn+=++++−+,②····················8分①−②:23411222222nnnTn+−=+++++−,····················
····10分9∴()11222221212nnnnTnn++−=−+=+−−.·································12分19、(1)证明:由等腰梯形2243ABCDAD===,得60ABC=.又2ABBC=,所以A
CBC⊥.····························1分又23PCBC==,26PB=,则222CBCPPB+=,所以BCCP⊥.·········2分又ACCPC=,所以BC⊥平面APC,···································3分所以平面AP
C⊥平面ABC.·············································4分(2)如图,取AB的中点E,连接DE,CE,AC,由四边形AECD为菱形,且60DAE=,得ACDE⊥,记垂足为O,··········5分由(1)知,平面APC⊥平面ABC,又POA
C⊥,所以PO⊥平面ABC.·······6分同理,EO⊥平面APC,所以OA,OE,OP两两垂直,如图,建立以OA,OE,OP为x,y,z轴正方向的空间直角坐标系.则6AC=,3PO=,所以()3,0,0A,()3,23,0B−,()
3,0,0C−,()0,0,3P,所以()3,23,3BP=−,()6,23,0AB=−,()0,23,0BC=−,··········8设平面CBP的法向量为()2,,nxyz=,所以2200BCn
BPn==,即23032330yxyz−=−+=,不妨设3z=,得10xy=−=所以平面CBP的一个法向量为()21,0,3n=−.························10分设直线AB与平面
BCP所成角为,63sincos,4432ABnABnABn====,·····················11分10∴22313cos1sin144=−=−=.······················
······12分20、(1)由(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,···········1分解得x=0.0075;·····················································
···2分(2)用频率估计概率,可得从该市所有高三考生的理综成绩中随机抽取1个,理综成绩位于[220,260)内的概率为(0.0125+0.0075)×20=0.4,···························3分所以随
机变量y服从二项分布B~(3,0.4),···································4分故P(y=k)=C3k0.4k0.63﹣k,k=0,1,2,3,故y的分布列为y0123P0.2160.4320.28
80.064··········································································7分则E(y)=3×0.4=1.2;····································
···········8分(3)记该市高三考生的理综成绩为z,由题意可知,P(210<z<240)≤P(200<z<240)=20×(0.011+0.0125)=0.47<0.6827,···········10分P(
195<z<255)≤P(180<z<260)=20×(0.0095+0.011+0.0125+0.0075)=0.81<0.9545,·························11分所以z不近似服从正态分布N(225,225),所以这套试卷得到差评.··············
·12分21、(1)由题意得:2,1cb==,·········································2分则2223abc=+=,······················
································3分∴椭圆C的方程为2213xy+=.···········································4分(2)设1122(
,),(,)AxyBxy,联立222113ykxkxy=+−+=,·················································5分11化简可得:22(31)6
(21)12(1)0kxkkxkk++−+−=,························6分因为直线21ykxk=+−与椭圆C交于,AB两点∴22[6(21)]4(31)[12(1)]0,kkkkk=−−+−
·····························7分化简得:23120kk−+,解得04k,由根与系数的关系得:1226(21)31kkxxk−+=−+,1221211()3kkxxk−=+,··············8分记直线PA,PB的斜率为,PA
PBkk,121221121122(11)PAPByyxyxyxxkxxkxx−−+−++=+=······························9分1212122(22())kxxkxxxx+−+=22212(1)6(21)313112(1)2223()1kkk
kkkkkkkk−−+−−+−+=·······································10分2(22)12(1)6(21)12(1)kkkkkkkk−=−−−−3(212(1)(21)6(12))kkkk
k−−=−−−2212126)1216(18kkkkk−+−=−−··········································11分66()61kk−=−1=.所以直线,PAPB的斜率之和为定值
1.································12分22、(1)函数()fx的定义域为()0,+,()11axfxaxx−=−=,··············································1分当0a时,对任意的0x,()0f
x,故()fx在()0,+上单调递增,()fx无极值;···························2分12当0a时,当10,xa时,()0fx,()fx单调递增;·······························
·3分当1,xa+时,()0fx,()fx单调递减.·······························4分故()fx在1xa=处取得极大值,无极小值.综上所述,若()fx存在极值,则a的取值
范围为()0,+.·······················5分(2)当1a=−时,()1ln1xxxefxxexx−−=−−−.设()2ln1hxxexx=−−−,其定义域为()0,+,则证明()
0hx即可.·······················································6分()()11xxhxxex+=+−,设()()uxhx=,则()()2120xux
xex=++,··············································7分故函数()hx在()0,+上单调递增.131022eh=−,()1220he=−.
()0hx=有唯一的实根01,12x,且001xex=,···························8分00lnxx=−.当00xx时,()0hx;当0xx时,()0h
x,··················································9分故函数()hx的最小值为()0hx.()()0000000ln1110xhxhxxexxxx=−−−=+−−=.····················11分()1xfxxe−
.························································12分13