【文档说明】山东省枣庄市2019-2020学年高一下学期期末考试数学试题答案.pdf,共(6)页,109.127 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-05fd4e7e4a04b9604b5f07b871f4342e.html
以下为本文档部分文字说明:
高一数学答案第1页共6页2019~2020学年度第二学期质量检测高一数学答案及评分标准2020.7一、单项选择题:本大题共8小题,每小题5分,共40分.1~4ADCB5~8DCBD二、多项选择题:本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对
的得3分,有选错的得0分.9.ACD10.ACD11.BC12.BCD三、填空题:本题共4小题,每小题5分,共20分.13.{|(21)π,}xxkk≠+∈Z14.①②③15.0或316.0.65四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本题满分10分)解:(1)圆锥SO的母线长22345l=+=.······························································1分圆锥SO的侧面积π3515πS=××=侧.····························
····························3分圆锥SO的体积21(π3)412π3V=×××=.····················································5分(2)设圆锥SO的内接圆柱OO′的底面半径为r,则hRrHR−=,即343hr−
=.解得334hr=−.········································7分内接圆柱OO′的侧面积32π2π(3)4hSrhh==−································
·············8分侧面积2233(4)[4(2)]22Shhhππ=−+=−−.当2h=时,S有最大值6π,即圆柱侧面积的最大值为6π.··················10分18.(1)2ππ()3sincos(sincos)(sincosco
ssin)244fxxxxxxx=++−················1分31sin2cos222xx=−·······························································
·············3分πsin(2)6x=−···············································································
··········4分所以()fx的最小正周期2ππ2T==.······························································5分BOASO'C高一数学答案第2页共6页令πππ2π22π()262
kxkk−−+∈Z��,解得ππππ()63kxkk−+∈Z��.所以()fx的单调递增区间是ππ[π,π]()63kkk−+∈Z.·································6分(2)由(1)及题设条件知π1
()sin()263AfA=−=.因为π02A<<,所以πππ663A−<−<.·····························································7分从
而22ππ122cos()1sin()1()6633AA−=−−=−=.·····································8分所以ππcoscos[()]66AA=−+·················
·····························································10分ππππcos()cossin()sin6666AA=−−−·························
·························11分2231126132326−=×−×=.·························································12分19.(本小题满分1
2分)解:(1)1111()3333BDBCACABACAB==−=−uuuruuuruuuruuuruuuruuur.············1分所以2133ADABBDABAC=+=+uuuruuuruuuruuuruuur.·
·········2分所以111236AEADABAC==+uuuruuuruuuruuur.··············3分所以2136EBABAEABAC=−=−uuuruuuruuuruuuruuur;·······················
········································4分(2)1536ECACAEABAC=−=−+uuuruuuruuuruuuruuur.·········································
······························5分解法1:如图,以ACuuur,ABuuur所在方向分别为x轴,y轴的正方向,建立平面直角坐标系xAy,则(0,3)B,(6,0)C.·······················
·································6分则2136EBABAC=−uuuruuuruuur(1,2)=−;·······························7分1536ECABAC=−+uuuruuuruuur15(0,3)(6
,0)(5,1)36=−+=−.·······8分yxEDBCAEDBAC高一数学答案第3页共6页所以·(-1)52(-1)-7EBEC=×+×=uuuruuur,················································
····················9分22(1)25EB=−+=uuur,225(1)26EC=+−=uuur.······································11分设ECuuur与EBuuur的夹角为
θ,则77130cos130526EBECEBECθ⋅−===−×⋅uuuruuuruuuruuur.·····················································12分解法2:因为2136EBABA
C=−uuuruuuruuur,1536ECABAC=−+uuuruuuruuur.所以2115()()3636EBECABACABAC⋅=−⋅−+uuuruuuruuuruuuruuuruuur22251193618ABACABAC=−−
+⋅uuuruuuruuuruuur222511360793618=−×−×+×=−.···················································7分22221412||()369369EBABACABACABAC=
−=+−⋅uuuruuuruuuruuuruuuruuuruuur2241236059369=×+×−×=;···································9分222151255||()369369ECABACABACA
BAC=−+=+−⋅uuuruuuruuuruuuruuuruuuruuur221255360269369=×+×−×=.····························11分设ECuuur与EBuuur的夹角为θ,则77130cos130526EBECEBEC
θ⋅−===−×⋅uuuruuuruuuruuur.·········12分20.(1)所有的样本点为:1234AAAA,1234AAAA,1234AAAA,1234AAAA;1234AAAA,1234AAAA,1234AAAA,1234AAAA;1234AAAA,1
234AAAA,1234AAAA,1234AAAA;1234AAAA,1234AAAA,1234AAAA,1234AAAA.·······································4分注:少一个样本点不得分.ED
BAC高一数学答案第4页共6页(2)用B表示事件“李明通过面试”,则李明恰好答对3道题或答对4道题.所以12341234123412341234()()()()()BAAAAAAAAAAAAAAAAAAAA=UUUU.···························
····································································································6分由互斥事件的概率加法公式与互为独立事件的概率乘法公式,得12341234123412
341234()()()()()()PBPAAAAPAAAAPAAAAPAAAAPAAAA=++++···················································································
············································8分1114113112111111111123452345234523452345=×××+×××+×××+×××+×××························
···························································································10分111111(43211)2345120=××××++++=.····················
····························12分注:(2)严格按步骤评分.21.(本小题满分12分)证明:(1)如图,设G为PA的中点,连接GE,GF.又F为PB的中点,所以GF为PAB△的中位线.所以GFABP,
且12GFAB=.·················1分矩形ABCD中,点E是CD的中点,故ECABP,且12ECAB=.··········································································2分所以G
FECP,且GFEC=.所以四边形GFCE为平行四边形.···································································3分所以CFEGP.································
·································································4分又CF⊄平面PAE,EG⊂平面PAE,所以CFP平面PAE.··············
·······6分GFPECAB高一数学答案第5页共6页(2)设H为AE的中点,连接PH,BH.在矩形ABCD中,24ABAD==,点E是CD的中点,故2PAPE==,90APE∠=°,故PHAE⊥,且2PH=.······
··············8分在ABH△中,2AH=,4AB=,45HAB∠=°,由余弦定理,得2222cos45BHABAHABAH=+−⋅⋅°2162242102=+−×××=.···························
···································9分在PHB△中,23PB=,2PH=,10BH=,故222PBPHBH=+,故PHBH⊥.························································
··10分又PHAE⊥,BHAEH=I,BH⊂平面ABCE,AE⊂平面ABCE,故PH⊥平面ABCE.······················································································11分又PH
⊂平面PAE,故平面PAE⊥平面ABCE.········································12分22.(本小题满分12分)解:(1)根据题意,[70k∈,100),按组距为5可分成6个小区间,分别是[70,75),[75,8
0),[80,85),[85,90),[90,95),[95,100).因为70100k<�,由55(1)nkn<+�,*n∈N,·················································1分所以14n=
,15,16,17,18,19.·····································································2分每个小区间对应的频率值分别是20339,14,15,16
,56052,17,18,19.nnnYan−−�=�=��⋅=�所以3(14151639)5(8+4+2)160a×++−+=.························································3分解得1100a=.···········
···························································································4分FPHECBA高一数学答案第6页共6
页(2)由(1)中的数据,得[85k∈,90)的频率为20171250.4100−××=;[90k∈,95)的频率为20181250.2100−××=;[95k∈,100]的频率为20191250.1100−
××=.利用按比例分配分层随机抽样抽取的7件产品中,[85k∈,90)的有4件,分别记作1A,2A,3A,4A;[90k∈,100)的有3件,分别记作1B,2B,3B.················6分从抽取的7件产品中任取2件产品,则样本空间{Ω=12AA,13AA,14AA,
11AB,12AB,13AB,23AA,24AA,21AB,22AB,23AB,34AA,31AB,32AB,33AB,41AB,42AB,43AB,12BB,13BB,23}BB,所以()21nΩ=.···········································
··············7分事件A=“随机抽取的2件产品中至少有一件A级品”,则{A=11AB,12AB,13AB,21AB,22AB,23AB,31AB,32AB,33AB,41AB,42AB,43AB,12BB,13BB,23}BB,所以()15nA=.由古典概型公式,得()15
5()()217nPAnAΩ===.································8分(3)[70k∈,75)的频率为3143916020×−=;[75k∈,80)的频率为315391
6010×−=;[80k∈,85)的频率为3163936020×−=;[85k∈,90)的频率为0.4;[90k∈,95)的频率为0.2;[95k∈,100]的频率为0.1.······················································
···················9分11372.577.582.587.50.492.50.297.50.1201020k=×+×+×+×+×+×························
·····································································································10分87=.······································
·······································································12分