【文档说明】2021-2022学年高中数学人教A版选修2-1教案:1.1.1命题1 含解析【高考】.doc,共(2)页,106.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-ffde3ddc08e9ee4225db8338646d903d.html
以下为本文档部分文字说明:
-1-1.1.1命题(第一课时)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)312
;(3)312吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1.教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition).也就是说,判断一个语句是不是命题
关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(trueproposition);假命题:判断为假的语句叫做假命题(falseproposition).上述5个命题中,(2)是假命
题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5)215x;(6)平面内不相交的两条直线一定平行;(7)明天下雨
.(学生自练→个别回答→教师点评)-2-④探究:学生自我举出一些命题,并判断它们的真假.2.将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.②试将例1中的命题(6
)改写成“若p,则q”的形式.③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3.小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.
三、巩固练习:1.练习:教材P41、2、32.作业:教材P9第1题