【文档说明】安徽省亳州市蒙城县第六中学2022届高三下学期开年联考文科数学试题参考答案.pdf,共(6)页,301.793 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-fb4ae5e7a91a72021422cd6fd143746b.html
以下为本文档部分文字说明:
1文数参考答案题号123456789101112答案CBADABDBCACB1.【解析】{1,0,1}A,{1,2}B,选C2.【解析】因为(1)32izi,所以32+3215122iiizi(1i
)().选B3.【解析】2,22AApFyp,选A4.【解析】A、C不是奇函数,B在(0,2)上先增后减,22xxy是奇函数且在(0,2)单增,选D.5.【解析一】设等差数列{}na的公差为d,由40S,55a,得1146045adad,13
2ad,25nan,24nSnn,选A.【解析二】5554aSSS,故选A.6.【解析】14天中有:1-3日,7日,12-14日共7天空气质量指数为优或良,故A对;14天中的中位数为:86121103.52,故B错;从11日到14
日空气质量指数越来越低,故空气质量越来越好,故C对;观察折线图可知D答案显然成立.故选B.7.【解析】设大圆面积为1S,小圆面积2S,则16421S,221S.则黑色区域的面积为2152121SS,所以
落在黑色区域的概率为321521121SSSP.故选D8.【解析】连接DE,因为AD//BC,所以∠EAD是异面直线AE与BC所成角,设正方体棱长为2,则AB=BC=2CE=2,在Rt△ACE中,223AEACCE
,在RtADE中,2cos3ADEADAE,∴异面直线AE与CD所成角的余弦值为23,选B.9.【解析】1122931111log3log32242ca,1
21lnln12bea,所以cab,选C.10.【解析一】因(42)(1)(4)(2)22yyOPxOAyOByOAyOBOAOB,令'4,'2OAOAOBOB
,2则(1)'22yyOPOAOB,所以点,','PAB共线,又0xy可得轨迹为线段,图中线段DE为所求。【解析二】以OA所在射线为x轴,过点o且垂直于OA的直线为y轴建
立坐标系,则点13(1,0),(,)22AB并设点P坐标,代入向量式化简可得直线方程,又0xy可得轨迹为线段.11.【解析】'(1)2,(1)1kfafa,所以切线方程是(1)2(1)yaax,令0x得(0,1)Aa,令0y得1(,0)2aBa,故围城的
△AOB的面积为11111(2)1224AOBaSaaaa,选C.12.【解析】由题意可得,,2,3,,,所以,且,2,3,,,当时,成立;当,3,,10时,应有成立,因为在上单调递增,所以随着的增大而减小,故,综上,的取值范围是.选B13.【答案】
72【解析】(,),,mmm7--13(-)702ababc=214.【答案】0,8【解析】0a时不等式恒成立;当0,0a时不等式恒成立,得08a15.【答案】2【解析】焦点为4,0F,4
c,OAFB为矩形,90AOB,根据双曲的对称性,tan451ba,又222abc,则可解得228ab,则双曲线的离心率为2.16.【答案】3(3]2,【解析】根据三角函数的定义得1sin,0,2y,由于角的终边逆时针旋转3得到角,
故3,所以2sinsin3y,所以2133sinsinsincos3sin3226yy因为0,2,所以
2,663,所以1sin,162,即123,32yy.17.【解析】(1)由正弦定理sinsinsinabcABC,得si
nsinsincos3sinsinBCACAC,........2分又sinsin()sincoscossinBACACAC,所以cossinsin3sinsinACCAC,12(1nnnqqn
10)2q12(1nnqn10)1n122n12nnq2xyR111122nnnn1092qq109(2,2)3又sin0C,所以cos13sinAA,即3sincos1AA,π
1sin()62A,...................................5分因为0πA,所以ππ66A,π3A.............................
..........................................................................6分(2)由余弦定理,得222π2cos,3abcbc即2()34bcbc,...................
......................................8分又S△ABC=12bcsinA=3.则bc=4............................................
.............................................................10分所以4bc..............................................................................
....................................................................12分18.【解析】(1)估计算甲店的日销售额平均数为100.1300.1500.6700.15900.0549x
甲................................................................2分估计算乙店的日销售额平均数为100.2300.25500.25700.1900.247x乙.xx甲乙····
·······································································································
···········4分(2)日销售额超过55万的天数占比不少于12013603,甲日销售额不低于55万的概率约为(6055)0.03200.0075200.00250.35,············
6分乙日销售额不低于55万的概率约为(6055)0.0125200.005200.0100.3625,········8分两者均大于13,两店均运转良好.···················································
·································9分(3)答案不唯一,但需结合数据与统计概率相关知识加以说理,方能给分.答案一:甲店日销售额平均值略高于乙店,经计算,乙店方差为771,故甲店销售情况比乙店要稳定,所以我选甲店;答案二:甲店日销售额平均值略高于乙
店,由频率分布直方图可知,甲店的销售额方差明显低于甲店,故甲店销售情况比乙店要稳定,所以我选甲店;答案三:虽然甲店日销售额平均值略高于乙店,但乙店日销售额在80万-100万出现的概率比甲店高,故我认为乙店
更有潜力,所以我选乙店.·············12分19.【解析】(1)连接��,且�、�分别为��、��的中点,所以��∥��,PA平面BDE,OE平面BDE,PA∥平面BDE.............................
............................................................5分(2)侧棱��⊥底面����,底面����是正方形,∴��⊥底面���....................
........................................................................7分��=��=2,��=2√3,��=2√2,��=√2,因
cos∠���=����=����,∴��=�√��=����................................................................................................
9分4∴四面体PDEF的体积������=������=��������==��������==��������=��................................12分(或者������=������=��������=��������=��)20
.【解析】(1)由题意知223121ab,22233cabaa,解得223,2ab椭圆C的方程为22132xy..........................................................
.............................4分(2)若直线l的斜率不存在,不妨设其方程为1x,(1x是相同),此时AB、的坐标为23(1,)3则13OAOB.......................
........5分若直线l的斜率存在,设其方程为ykxm,联立22,132ykxmxy消整理得:222(32)6360kxkmxm因为直线与椭圆交于AB、两点,故,解
得22320km.设,,则2121222636,3232kmmxxxxkk,..............................................7分原点O到直线AB的距离211mdk得221mk,代入22320km知k
R恒成立..........8分又点P不在直线l上,所以612km,且221mk得0k..........................................................9分22121212121212222222()()(1)()
566111(1)3232332OAOBxxyyxxkxmkxmkxxkmxxmmkkkkk..................................
......11分因0k,故1123OAOB,综上知,OAOB的取值范围是11,23…………………………12分21.【解析】(1)由题意知0x且221221'()xaxaxxfxxx......
..............................................1分若0a,1'()xfxx,当0,1x时,'()0fx;当1,x时,'()0fx()fx
在0,1单增,在1,单减..............................................................3分若0a,方程2210axx的180a,方
程有两根12118118,44aaxxaa且120xxy0>11(,)Axy22(,)Bxy5()fx在118(0,)4aa单增,在118(,)4aa单减...........................................
...............5分(2)依题意2()ln0fxxxax对任意的[1,)x恒成立.所以2lnxxax对任意的[1,)x恒成立...........................
....................6分令2ln()xxFxx,[1,)x,224431(1)2(ln)2ln2ln1()xxxxxxxxxxxFxxxx,.............................................
...................7分令()2ln1hxxx,1x≥,所以22()1xhxxx,令()0hx,所以2x.因为当(1,2)x时,()0hx,()hx单调递减;当(2,)x
时,()0hx,()hx单调递增.当2x时,函数()hx的最小值为32ln2,且32ln20..................................................................10分所以()0hx,即
()0Fx.()Fx在[1,)上单调递增,所以min()(1)1FxF,........................11分所以1a,故实数a的取值范围为(,1)....................
.............................12分22.【解析】(1)由题意,直线22:22xtlyt,可得直线l是过原点的直线,故其极坐标方程为4R,.......................................
......................................................................3分又22cos4sin4,故244xy;.................................................
..........................................5分(2)由题意,直线l的极坐标为R,设M、N对应的极径分别为1,2,将R代入曲线C的极坐标可得:22cos4sin4,故1224sincos
,1224cos,12MN21212244cos,........................................................................
....7分故2416cos,则21cos4,即1cos2,所以tan3k故直线l的斜率是3.........................................................................................
.....................................10分623.【解析】(1)当1a时,4,31()21323,3214,2xxfxxxxxxx≤≤当3x≤时
,()41fxx≤无解,故不成立;..................................................................................1分当132x≤时,()231fxx≤,解得112x≤≤;..
....................................................................3分当12x时,()41fxx≤,解得152x综上所述,5x-1..............
...................................................................................................................5分(2)[
3,3]x,234xaxx≤等价于27xa≤,........................................................7分即7722aax...................
.....................................................................................................................
8分得11a.................................................................................................................
..................................10分