黑龙江省齐齐哈尔市、黑河市、大兴安岭地区2020年中考数学试题(解析版)【精准解析】

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 23 页
  • 大小 815.349 KB
  • 2025-02-14 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
黑龙江省齐齐哈尔市、黑河市、大兴安岭地区2020年中考数学试题(解析版)【精准解析】
可在后台配置第一页与第二页中间广告代码
黑龙江省齐齐哈尔市、黑河市、大兴安岭地区2020年中考数学试题(解析版)【精准解析】
可在后台配置第二页与第三页中间广告代码
黑龙江省齐齐哈尔市、黑河市、大兴安岭地区2020年中考数学试题(解析版)【精准解析】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有1人购买 付费阅读2.40 元
/ 23
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】黑龙江省齐齐哈尔市、黑河市、大兴安岭地区2020年中考数学试题(解析版)【精准解析】.doc,共(23)页,815.349 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-f5e11ac30b714b11ff4ef16f200e9267.html

以下为本文档部分文字说明:

1黑龙江省齐齐哈尔市、黑河市、大兴安岭地区2020年中考数学试题一、选择题1.2020的倒数是()A.12020B.12020−C.2020D.-2020【答案】A【解析】【分析】按照倒数的定义解答即可.【详解】解:20

20的倒数是12020.故答案A.【点睛】本题考查了倒数的定义,掌握互为倒数的两个数积为1是正确解答本题的关键.2.下面四个化学仪器示意图中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图

形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题主要考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形的两部分折叠后可

以重合.3.下列计算正确的是()A.a+2a=3aB.(a+b)2=a2+ab+b22C.(﹣2a)2=﹣4a2D.a•2a2=2a2【答案】A【解析】【分析】先利用合并同类项、完全平方公式、乘方以及单项式乘单项式的运算法则逐项排除即可.【详解】解:A.a+2a=(1+2)a=3a,故该选项计算正

确;B.(a+b)2=a2+2ab+b2,故该选项计算错误;C.(﹣2a)2=4a2,,故该选项计算错误;D.a•2a2=2a3,,故该选项计算错误.故选:A.【点睛】本题考查了合并同类项、完全平方公式、乘方、单项式乘单项式等知识点,掌握相关计算方法和运算法则是解答本题

的关键.4.一个质地均匀的小正方体,六个面分别标有数字“1”、“2”、“3”、“4”、“5”、“6”,掷小正方体后,观察朝上一面的数字出现偶数的概率是()A.12B.13C.14D.23【答案】A【解析】【分析】直接利用概率公式,用出现偶数朝上的结果数除以所有等可能的结果数即可得.【详解

】解:∵掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,∴朝上一面的数字出现偶数的概率是3162=,故选:A.【点睛】本题考查了概率公式,熟练掌握求随机事件的概率方法是解答的关键.5.李强同学去登山,先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速

度小于下山的速度.在登山过程中,他行走的路程S随时间t的变化规律的大致图象是()A.B.3C.D.【答案】B【解析】【分析】根据题意进行判断,先匀速登上山顶,原地休息一段时间后,可以排除A和C,又匀速下山,上山的速度小于下山的速度,排除D,进而可以判断.【

详解】解:因为登山过程可知:先匀速登上山顶,原地休息一段时间后,又匀速下山,上山的速度小于下山的速度.所以在登山过程中,他行走的路程S随时间t的变化规律的大致图象是B.故选:B.【点睛】本题考查了函数图像,解决本题的关键是理解题意,明确过程,利用数形结合思想求解.6.数学老师在课

堂上给同学们布置了10个填空题作为课堂练习,并将全班同学的答题情况绘制成条形统计图.由图可知,全班同学答对题数的众数为()A.7B.8C.9D.10【答案】C【解析】【分析】根据统计图中的数据,可知做对9道的学生最多,从而可以得到全班

同学答对题数的众数,本题得以解决.【详解】解:由条形统计图可得,全班同学答对题数的众数为9,故选:C.【点睛】本题考查条形统计图、众数等相关知识点,熟练掌握众数、中位数、平均数、方差的概念及意义,4利用数

形结合的方法求解.7.若关于x的分式方程32xx−=2mx−+5的解为正数,则m的取值范围为()A.m<﹣10B.m≤﹣10C.m≥﹣10且m≠﹣6D.m>﹣10且m≠﹣6【答案】D【解析】【分析】分式方程去分

母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.【详解】解:去分母得35(2)xmx=−+−,解得102mx+=,由方程的解为正数,得到100m+,且2x,104m+,则m的范围为10m−且6−m,故选:D

.【点睛】本题主要考查了分式方程的计算,去分母化为整式方程,根据方程的解求出m的范围,其中考虑到分式方程的分母不可为零是做对题目的关键.8.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案

共有()A.3种B.4种C.5种D.6种【答案】B【解析】【分析】设可以购买x支康乃馨,y支百合,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出小明有4种购买方案.【详解】解:设可以购买x支

康乃馨,y支百合,依题意,得:2x+3y=30,∴y=10﹣23x.∵x,y均为正整数,∴38xy==,66xy==,94xy==,122xy==,∴小明有4种购买方案.5故选:B.【点睛】本题考查了二元一次方程应

用中的整数解问题,找准等量关系,正确列出二元一次方程是解题的关键.9.有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.

45°D.60°【答案】B【解析】【分析】由平行线的性质可得∠CFA=∠D=90°,由外角的性质可求∠BAD的度数.【详解】解:如图,设AD与BC交于点F,∵BC∥DE,∴∠CFA=∠D=90°,6∵∠CFA=∠B+∠BAD=60°+∠BAD,∴∠BAD=30°故选:B.【点睛】本题考查了平行

线的性质以及外角的性质,熟知以上知识点是解题的关键.10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元

二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x轴y轴的交点,综合判断即可.【详解】解:抛物线开口向上,因此a>0,与y轴

交于负半轴,因此c<0,故ac<0,所以①正确;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+

c=0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C.【点睛】本题考查二次函数的图象和性质,掌握二次函数的图象与系数之间的关系是正确判断的前提.7二、填空题(每小题3分,满分21分)11.20

20年初新冠肺炎疫情发生以来,近4000000名城乡社区工作者奋战在中国大地的疫情防控一线.将数据4000000用科学记数法表示为______.【答案】4×106【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值

时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将数据4000000用科学记数法表示为4×106,故答

案为:4×106.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.函数32xyx+=−中,自变量x

的取值范围是_______.【答案】x≥﹣3且x≠2.【解析】【详解】解:根据题意得:3020xx+−,解得:x≥-3且x≠2.故选A.点睛:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函

数表达式是二次根式时,被开方数非负.13.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是______.(只填一个即可)8【答案】AD=AC(∠D=∠C或∠ABD=∠ABC等)【解

析】【分析】利用全等三角形的判定方法添加条件即可求解.【详解】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添

加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件.14.如图是一个几何

体的三视图,依据图中给出的数据,计算出这个几何体的侧面积是______.【答案】65π【解析】【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l和底面圆半径为r的长度,9再套用侧面积公式即可得出结论.【详解】解:由三视图可知,原几何

体为圆锥,设圆锥母线长为l,底面圆半径为r有l=13,r=5S侧=πrl=π×5×13=65π.故答案为:65π.【点睛】本题考查了三视图以及圆锥的侧面积公式,其中根据几何体的三视图判断出原几何体是解题的关键,再套用公式即可作答.15.等

腰三角形的两条边长分别为3和4,则这个等腰三角形的周长是_____.【答案】10或11【解析】【分析】分3是腰长与底边长两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为3、3、4,∵此时能组成三角形,∴周长=3+3+4=10;②3是底

边长时,三角形的三边分别为3、4、4,此时能组成三角形,所以周长=3+4+4=11.综上所述,这个等腰三角形的周长是10或11.故答案为:10或11.【点睛】本题考查了等腰三角形的性质,根据题意,正确分情况讨论

是解题的关键.16.如图,在平面直角坐标系中,矩形ABCD的边AB在y轴上,点C坐标为(2,﹣2),并且AO:BO=1:2,点D在函数y=kx(x>0)的图象上,则k的值为_____.【答案】2【解析】10【分析】先根据C的坐标

求得矩形OBCE的面积,再利用AO:BO=1:2,即可求得矩形AOED的面积,根据反比例函数系数k的几何意义即可求得k.【详解】如图,∵点C坐标为(2,﹣2),∴矩形OBCE的面积=2×2=4,∵AO:BO=1:2,∴矩形AOED的面积=2,∵点D在函数y=k

x(x>0)的图象上,∴k=2,故答案为2.【点睛】本题考查反比例函数与几何图形的综合,涉及矩形的面积之比、反比例函数比例系数k的几何意义,解答的关键是理解系数k的几何意义和矩形的面积比的含义.17.如图,在平面直角坐标系中,等

腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,42),得到等

腰直角三角形④;第四次滚动后点A4变换到点A5(10+122,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是_____.【答案】22020【解析】11【分析】根据A1(0,2)确定第1个等腰直角三角形(即等腰直角三角形①)的面积,根据A

2(6,0)确定第1个等腰直角三角形(即等腰直角三角形②)的面积,…,同理,确定规律可得结论.【详解】∵点A1(0,2),∴第1个等腰直角三角形的面积=1222=2,∵A2(6,0),∴第2个等腰直角三角形的边长为622−=22,∴第2个等腰直角三角形的面积=122222=

4=22,∵A4(10,42),∴第3个等腰直角三角形的边长为10−6=4,∴第3个等腰直角三角形的面积=1442=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,

熟练掌握方法是关键.三、解答题(本题共7道大题,共69分)18.(1)计算:sin30°+16﹣(3﹣3)0+|﹣12|(2)因式分解:3a2﹣48【答案】(1)4;(2)3(a+4)(a﹣4).【解析】【分析】(1)先用特殊角的三

角函数值、零指数幂的性质、绝对值的性质、算术平方根的知识化简,然后计算即可;(2)先提取公因式3,再运用平方差公式分解因式即可.【详解】解:(1)sin30°+16﹣(3﹣3)0+|﹣12|=12+4﹣1+12=4;

(2)3a2﹣48=3(a2﹣16)12=3(a+4)(a﹣4).【点睛】本题考查了实数的运算和因式分解,掌握相关运算性质和因式分解的基本思路是解答本题的关键.19.解方程:x2﹣5x+6=0【答案】x1=2,x2=

3【解析】【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,则x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.20.如图,AB

为⊙O的直径,C、D为⊙O上的两个点,¼AC=»CD=»DB,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.【答案】(1)见解析;(2)33【解析】【分析】(1)连接OD,根据已知条件得到∠BOD=

13180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结

论.【详解】(1)证明:连接OD,13∵»»»==ACCDBD,∴∠BOD=13180°=60°,∵»»CDDB=,∴∠EAD=∠DAB=12BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴

∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=2263−=

33.14【点睛】本题考查了切线的证明,及线段长度的计算,熟知圆的性质及切线的证明方法,以及含30°角的直角三角形的特点是解题的关键.21.新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工

,对他们的志愿服务时间进行统计,整理并绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:(1)本次被抽取的教职工共有名;(2)表中a=,扇形统计图中“C”部分所占百分比为%;(3)扇形统计图中,“D”所对

应的扇形圆心角的度数为°;(4)若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤1202015【答案】(1)50名;(2)a=4,32%;(3)144°;(4

)21600人【解析】【分析】(1)利用B部分的人数÷B部分人数所占百分比即可算出本次被抽取的教职工人数;(2)a=被抽取的教职工总数﹣B部分的人数﹣C部分的人数﹣D部分的人数,扇形统计图中“C”部分所占百分比=C部分的人数÷被抽取的教职工总数;(3)D部分所对应的扇形的圆

心角的度数=360°×D部分人数所占百分比;(4)利用样本估计总体的方法,用30000×被抽取的教职工总数中志愿服务时间多于60小时的教职工人数所占百分比.【详解】解:(1)本次被抽取的教职工共有:10÷20%=50(名),故答案为:50;(2)a=50﹣

10﹣16﹣20=4,扇形统计图中“C”部分所占百分比为:1650×100%=32%,故答案为:4,32;(3)扇形统计图中,“D”所对应的扇形圆心角的度数为:360×2050=144°.故答案为:144;(4)30000×162050+=21600(人).答:志愿服务

时间多于60小时的教职工大约有21600人.【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估算总体,关键是正确从扇形统计图和表格中得到所用信息.22.团结奋战,众志成城,齐齐哈尔市组织援助医疗队,分别乘

甲、乙两车同时出发,沿同一路线赶往绥芬河.齐齐哈尔距绥芬河的路程为800km,在行驶过程中乙车速度始终保持80km/h,甲车先以一定速度行驶了500km,用时5h,然后再以乙车的速度行驶,直至到达绥芬河(加油、休息时间忽略不计).甲、乙两车离

齐齐哈尔的路程y(km)与所用时间x(h)的关系如图所示,请结合图象解答下列问题:16(1)甲车改变速度前的速度是km/h,乙车行驶h到达绥芬河;(2)求甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式,不用写出自变量x的取值范围;(3)

甲车到达绥芬河时,乙车距绥芬河的路程还有km;出发h时,甲、乙两车第一次相距40km.【答案】(1)100km/h,10h;(2)y=80x+100(3554x剟);(3)100km;2h【解析】【分析】(

1)结合图象,根据“速度=路程÷时间”即可得出甲车改变速度前的速度;根据“时间=路程÷速度”即可得出乙车行驶的时间;(2)根据题意求出甲车到达绥芬河的时间,再根据待定系数法解答即可;(3)根据甲车到达绥芬河的时间即可求出甲车到达绥芬河时,乙车距绥芬河的路程;根据“路

程差=速度差×时间”列式计算即可得出甲、乙两车第一次相距40km行驶的时间.【详解】解:(1)甲车改变速度前的速度为:500÷5=100(km/h),乙车达绥芬河是时间为:800÷80=10(h),故答案为:100;10;(2)∵乙车速度为80km/h,∴甲车到达绥芬河的时间为:80050

0355()804h−+=,甲车改变速度后,到达绥芬河前,设所求函数解析式为:y=kx+b(k≠0),将(5,500)和(354,800)代入得:5kb50035kb8004+=+=,17解得80100k

b==,∴y=80x+100,答:甲车改变速度后离齐齐哈尔的路程y(km)与所用时间x(h)之间的函数解析式为y=80x+100(3554x剟);(3)甲车到达绥芬河时,乙车距绥芬河的路程为:800﹣80×354=100

(km),40÷(100﹣80)=2(h),即出发2h时,甲、乙两车第一次相距40km.故答案为:100;2.【点睛】本题考查了一次函数的应用,利用待定系数法求一次函数的解析式,运用数形结合的方法是解答本题的关键.23.综合与实践在线上教学中,教师和学生都学习到了

新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折

痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形

?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图18②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在B

C边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB

边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.【答案】(1)是;等边三角形;60°;(2)15°;(3)见解析;(4)7、9【解析

】【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA

'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【详解】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴A

N=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=

60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,19∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥

ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A

'T>BT,∴AT>10﹣AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点睛】本题考查矩形和菱形的性质和判定,关键在于结合图形,牢记概念.24.综合与探究在平面直角坐标系中,抛物线y=12

x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.20(1)求抛物线的解析式;(2)直线AB的函数解析式为,点M的坐标为,cos∠ABO=;连接OC,若过点O的直线交线段

AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为;(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;

(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【答案】(1)y=12x2+2x;(2)y=x+4,M(-2,-2),cos∠ABO=22;(-2,2)或(0,4);(3)点Q(0,-43);(

4)存在,点N的坐标为(6,6)或(-6,-6)或(-2,6)【解析】【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;(2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则

AP=13AC或23AC,即可求解;(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;(4)分AC是边、AC是对角线两种情况,分别求解即可.【详解】解:(1)将点A、C的坐标代入抛物线表达式得:11640214262

−+=++=bcbc,解得20bc==,故抛物线的解析式为:y=12x2+2x;(2)点A(﹣4,0),OB=OA=4,故点B(0,4),由点A、B的坐标得,直线AB的表达式为:y=x+4;21则∠ABO=

45°,故cos∠ABO=22;对于y=12x2+2x,函数的对称轴为x=-2,故点M(-2-2);OP将△AOC的面积分成1:2的两部分,则AP=13AC或23AC,,则13=PCyy或23,即163=Py或23,解得:yP=2或4,故点P(-2,2)或(0,4),故答案为:y=x

+4;(-2-2);22;(-2,2)或(0,4);(3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,点A′(4,0),设直线A′M的表达式为:y=kx+b,则4022+=−+=−kbkb,解得1343==−kb,故直线A′M的表达式为:1433yx=−,令

x=0,则y=43−,故点Q(0,43−);(4)存在,理由如下:设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),①当AC是边时,点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单

位向上平移6个单位得到点N(O),即0±6=m,0±6=n,解得:m=n=±6,故点N(6,6)或(-6,-6);②当AC是对角线时,由中点公式得:﹣4+2=m+0,6+0=n+0,解得:m=-2,n=6,故点N(-2,6);综上,点N的坐

标为(6,6)或(-6,-6)或(-2,6).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面22积的计算等,其中第4问要注意分类求解,避免遗漏.23

管理员店铺
管理员店铺
管理员店铺
  • 文档 467379
  • 被下载 24
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?