【文档说明】四川省资阳市2020-2021学年高二上学期期末质量检测理科数学试题 含答案.docx,共(8)页,309.828 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-f1a2b156763f48d65b3e6028b61db58f.html
以下为本文档部分文字说明:
资阳市2020—2021学年度高中二年级第一学期期末质量检测理科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码贴在答题卡上对应的虚线框内。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答
案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知P椭圆221
164xy+=上的动点,则P到该椭圆两焦点的距离之和为A.23B.4C.43D.82.已知xyR,,则“lnlnxy=”是“xy=”的A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.在区间[34]−,上任取一个实数,则||1x≤的概率为A.
17B.67C.27D.574.执行右图所示的程序框图,若输入的x为-4,则输出y的值为A.0.5B.1C.2D.45.我市创建省级文明城市,需要每一位市民的支持和参与.为让全年级1000名同学更好的了解创建文明城市的重大意义,学校用系统抽样法(按等距的原则)从
高二年级抽取40名同学对全年级各班进行宣讲,将学生从1~1000进行编号,现已知第1组抽取的号码为13,则第5组抽取的号码为A.88B.113C.138D.1736.某商铺统计了今年5个月的用电量y(单
位:10kw/h)与月份x的对应数据,列表如下:x24568y304057a69根据表中数据求出y关于x的线性回归方程为ˆ6.517.5yx=+,则上表中a的值为A.50B.54C.56.5D.647.若圆22(1)(3)4xy−+−=与圆
22(2)(1)5xya+++=+有且仅有三条公切线,则a=A.-4B.-1C.4D.118.如图,M,N是分别是四面体O-ABC的棱OA,BC的中点,设OA=a,OB=b,OC=c,若MN=xa+yb+zc,则x,y,z的值分别是A.12,12,12B.12,12,12−C.12−,12,
12−D.12−,12,129.过椭圆22221(0)xyabab+=的左顶点A作圆222xyc+=(2c是椭圆的焦距)两条切线,切点分别为M,N,若∠MAN=60°,则该椭圆的离心率为A.12B.33C.22D.3210.已知m,n为两条不同的直线,,是两个不同的平面,给
出下列4个命题:①mnmn⊥⊥,∥;②n⊥,∥n⊥;③mnm⊥,∥n⊥;④mn⊥,∥mn⊥.其中所有真命题的序号是A.①③B.②④C.②③D.③④11.已知点A(0,0),B(0,3),若点P满足||1||2P
APB=,则PAB面积的最大值是A.2B.3C.4D.612.如图,棱长为3的正方体ABCD-A1B1C1D1中,P为正方体表面BCC1B1上的一个动点,E,F分别为BD1的三等分点,则||||PEPF+的最小值
为A.33B.522C.16+D.11二、填空题:本题共4小题,每小题5分,共20分。13.向量m=(1,2,-1),n=(2,1,a),若m⊥n,则a=_________.14.某几何体的三视图如右图所示,则该几何体的体
积为_________.15.把一枚质地均匀的骰子投掷两次,第一次出现的点数为m,第二次出现的点数为n,设事件A为方程组2251mxnyxy+=+=,有唯一解,则事件A发生的概率为_________.16.若M,P是椭圆
2214xy+=两动点,点M关于x轴的对称点为N,若直线PM,PN分别与x轴相交于不同的两点A(m,0),B(n,0),则mn=_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。17.(10分)命题p:曲线2
22280xymxmy++−+=表示一个圆;命题q:指数函数()(21)xfxm=−在定义域内为单调递增函数.(1)若p为假命题,求实数m的取值范围;(2)若pq为真,pq为假,求实数m的取值范围.18.(12分)已知曲线C:221(00)xyabab+=,,集合{
1234}A=,,,,{123}B=,,.(1)若abB,,求曲线C为半径2r≥的圆的概率;(2)若aAbB,,求曲线C为焦点在x轴上的椭圆的概率.19.(12分)已知点P(-1,4),Q(3,2).(1)求以PQ为直径的圆N的标准方程;(2)过点M(0,2)作直线l与(1)
中的圆N相交于A,B两点,若||4AB=,求直线l的方程.20.(12分)某次数学测试后,数学老师对该班n位同学的成绩进行分析,全班同学的成绩都分布在区间[95145],,制成的频率分布直方图如图所示.已知成绩在区间[125135)
,的有12人.(1)求n;(2)根据频率分布直方图,估计本次测试该班的数学平均分(同一组数据用该组数据区间的中点值表示).(3)现从[125135),,[135145],两个分数段的试卷中,按分层抽样的方法共抽取
了6份试卷.若从这6份试卷中随机选出2份作为优秀试卷,求选出2份优秀试卷中恰有1份分数在[135145],的概率.21.(12分)如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2,AD=2,点E是线段SD上的点,且DE=a(02a≤).(1)求证:对任意的02
a≤,都有ACBE⊥;(2)设二面角C-AE-D的大小为,直线BE与平面ACE所成角为,当1a=时,求cossin的值.22.(12分)已知椭圆C:22221(0)xyabab+=右焦点(10)F,,A
,B是分别是椭圆C的左、右顶点,P为椭圆的上顶点,三角形PAB的面积2S=.(1)求椭圆C的方程;(2)直线l:y=kx+m与椭圆交于不同的两点M,N,点Q(2,0),若∠MQO=∠NQO(O是坐标原点),判断直线l是否过定点,如果是,求该定点的坐标;如果不
是,说明理由.资阳市2020—2021学年度高中二年级第一学期期末质量检测理科数学参考答案及评分意见评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则。2.对计算题,当考生的解答在某一步出现错误时,如果后
继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。4.只给整数分。选择题和填空题
不给中间分。一、选择题:本大题共12小题,每小题5分,共60分。1.D2.A3.C4.C5.B6.B7.C8.D9.A10.D11.B12.D二、填空题:本大题共4小题,每小题5分,共20分。13.414.1000π15.11816.4三、解答题
:本大题共6个小题,共70分。17.(10分)方程222280xymxmy++−+=即为222()()28xmymm++−=−,···················1分(1)由p为假命题,知p为真命题,则2280m−,···························
·······2分解得2m或2m−,则m的取值范围是(,2)(2)−−+,.·····················································4分(2)
由(1)可知,p为真命题是m范围为:2m或2m−,当q为真命题时,211m−,解得1m,·················································6分由pq为真,pq为假,则p,q中有且仅有一个为真命题.········
·············7分当p为真,q为假时m的范围为:2m−,当p为假,q为真时m的范围为:12m,综上:m的取值范围是(,2)(1,2]−−.····································
················10分18.(12分)(1)由abB,得,a,b所有的取值可能为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种.·······································
·····················3分满足曲线C轨迹为圆且半径2r有(2,2),(3,3)两种.····························5分所以,概率29P=.·······
········································································6分(2)由,aAbB,a,b所有取值可能有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),
(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)共12种.····························9分满足曲线C为椭圆且焦点在x轴上的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种.···············
····················································································11分所以概率12P=·······································
··············································12分19.(12分)(1)方法1:以PQ为直径的圆方程为(3)(1)(2)(4)0xxyy−++−−=,·············4分化解得:222650xxyy−+−+=,则圆N的
标准方程为:22(1)(3)5xy−+−=.·············································5分方法2:圆心N的坐标(1,3),直径222||4225rPQ==+=,·······················4分则圆N的标准方程为:22(1)(3)5x
y−+−=.·············································5分(2)①当直线斜率不存在时,方程为0x=,解得1251yy==,,4AB=,符合,·················································
························································7分②当斜率存在时,设直线方程为2ykx=+,设圆心到直线距离为d,由222()2ABdR+=,则2225d+=,得1d=,由2111
kdk+==+,解得0k=,·······························································11分所以直线方程为0x=或2y=.····························
···································12分20.(12分)(1)由题可知:12600.0210n==(人).·····························
······················3分(2)1000.151100.251200.31300.21400.1118.5x=++++=.···············7分(3)由频率分布直方图可知:成
绩分布在)125,135有12人,在)135,145有6人,抽取比例为61183=,所以)125,135内抽取人数为4人,)135,145抽取人数为2人.············8分记)125,135中4人为a,b,c,d
,记)135,145的2人分别为e,f,则所有的抽取结果为:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种.···················
·······10分恰有一份分数段在)135,145有(a,e),(a,f),(b,e),(b,f),(c,e),(c,f),(d,e),(d,f)共8种,·······································
············································11分所以,概率815P=.·············································································12分21.(12分)(
1)连接BD,由ABCD是正方形,可得AC⊥BD,又SD⊥平面ABCD.则AC⊥SD,又SDBDD=,所以AC⊥面SBD,又BE面SBD,所以ACBE⊥.························
···························································4分(2)以D为原点,DA,DC,DS的方向为正方向建立空间直角坐标系D-xyz,则D(0,
0,0),E(0,0,1),A(2,0,0),C(0,2,0),B(220,,)则(220)CA=−,,,(021)CE=−,,,设面CAE的法向量为m=(x,y,z),则22020xyyz−=−+=,,设112xyz===,,,取m(112)=,,,又由CD⊥平面
ADE,所以(020)DC=,,可作为面ADE的一个法向量,所以,21cos222==.······································································7分面CAE的法向量m(112)=,,,
(221)EB=−,,.210sin1025==,············································································10分则cos10sin2=.········
···········································································12分22.(12分)(1)由题:c=1,(,0)(,0)AaBa−,,设(0,)Pb,则2ab=,又222
abc=+,代入可得2221ab==,,所以椭圆方程为2212xy+=.··································································5分(2)联立方程组2212ykxmxy=++=,,得222(21)
4220kxkmxm+++−=,设1122(,)(,)MxyNxy,,可得12221224212221kmxxkmxxk−+=+−=+,,······································
·····7分由∠MQO=∠NQO,可得0MQNQkk+=,····················································8分即121212121212122(2)()402222(2)(2)yykxmkxmkxxmkxxmx
xxxxx+++−+−+=+==−−−−−−,即12122(2)()40kxxmkxxm+−+−=,解得km=,·······································11分所以直线方程为(1)ykx=+,直线恒过定点(1,0)−.·················
···················12分