【文档说明】高中数学课时作业(人教A版必修第一册)课时作业 40.docx,共(2)页,16.621 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-eeaaa7f53fb29cc27b84c7016ccb62ec.html
以下为本文档部分文字说明:
课时作业40习题课指数型函数、对数型函数的性质的综合应用基础强化1.设f(x)=(13)|x|,x∈R,则f(x)是()A.奇函数且在(-∞,0)上单调递减B.偶函数且在(-∞,0)上单调递减C.奇函数且在(0,+∞)上单调递减D.偶函数且在(0,+∞)上单调
递减2.函数y=log2(2-x)在区间[0,1]上的最大值为()A.0B.1C.2D.43.已知函数f(x)=1-4x2x,则f(x)()A.图象关于原点对称,且在[0,+∞)上是增函数B.图象关于原点对称,且在[0,+∞)上是减函数C.
图象关于y轴对称,且在[0,+∞)上是增函数D.图象关于y轴对称,且在[0,+∞)上是减函数4.若函数g(x)=log3(ax2+2x-1)有最大值1,则实数a的值等于()A.-12B.14C.-14D.45.(多选)函数f(x)=(12)-x2+6x-7在下列哪些区
间内单调递减()A.(-∞,3)B.(-4,0)C.(1,3)D.(2,4)6.(多选)已知函数f(x)=log2(x2-4x+3),则下列说法正确的是()A.单调递增区间为[2,+∞)B.单调递增区间为(3,+∞)C.单调递减区间为(-∞,2]D.单调递减区间为(-∞,1)7.函数y=(1
2)1-x的单调递增区间为________.8.函数y=log3(9-x2)的值域是________.9.已知函数f(x)=3x+m3x+1是奇函数.(1)求实数m的值;(2)用函数单调性定义证明f(x)是R上的增函数.10.已知函数f(x)=log4x4·log2
x16.(1)求函数f(x)的值域;(2)解关于x的不等式f(x)>3.能力提升11.“a>12”是“函数f(x)=lg(ax-1)在区间(a,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知f(x)
=(12)x2-2ax在[1,3]上是减函数,则实数a的取值范围为()A.(-∞,1]B.[1,2]C.[2,3]D.[3,+∞)13.已知函数f(x)=log0.5(-x2+ax+b)的单调递增区间是[2,3),则f(2)=
()A.-1B.1C.0D.214.已知函数f(x)=log3ax+6x+3在区间(-1,3]上单调递减,则实数a的取值范围是()A.(-∞,2)B.(-12,2)C.(-2,2)D.(2,+∞)15.已知f(x)=log13(2x2-2ax+5
a)在区间(2,3)上是减函数,则实数a的取值范围是________.16.已知函数f(x)=log4(6x+m·5x).(1)当m=-1时,求f(x)的定义域;(2)若f(x)≤2对任意的x∈[0,1]恒成立,求m的取值范围.