【文档说明】宁夏吴忠中学2020-2021学年高二下学期期中考试文科数学试题含答案.doc,共(13)页,199.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-ecf3cc5fe1177001f3869a6e03ef2ab6.html
以下为本文档部分文字说明:
吴忠中学2020—2021学年度第二学期高二年级期中考试数学文试题一.选择题1.1+2i1-2i=()A.-45-35iB.-45+35iC.-35-45iD.-35+45i2.抛物线y=4x2的焦点坐标为()A.(1,0)B.(2,0)C.(0,18)D.(0,116)3
.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1B.2个C.3个D.4个4.已知双曲线x2a2-y2=1(a>0)的离心率是5,则a=(D)A.6B.4C.2D.125.有下列说法
:①若某商品的销售量y(件)关于销售价格x(元/件)的线性回归方程为yˆ=-5x+350,当销售价格为10元时,销售量一定为300件;②线性回归直线:yˆ=bˆx+aˆ一定过样本点中心;③在残差图中,残差点比较均匀落在水平
的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;④在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好.其中正确的结论个数为()A.1B.2C.3D.46.设F1和F2为双曲线x2a2
-y2b2=1(a>0,b>0)的两个焦点,若F1,F2,A(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是()A.y=±33xB.y=±3xC.y=±217xD.y=±213x7.已知函数f(x)=xlnx,则f(x)()A.在(0,+∞)上单调递增
B.在(0,+∞)上单调递减C.在0,1e上单调递增D.在0,1e上单调递减8.已知P是椭圆x225+y29=1上一点,F1,F2分别为椭圆的左、右焦点,且∠F1PF2=60°,则△F1PF2面积
为()A.3B.23C.33D.339.若函数f(x)=x3+ax2+x既有极大值又有极小值,则a的取值范围是()A.(-∞,-3)B.(-∞,-3)∪(3,+∞)C.(-3,3)D.(3,+∞)答案:b10.椭圆4x2+9y2=144内有一点P(3,2),则以P为中点的弦所在直线的斜
率为()A.-23B.-32C.-49D.-9411.曲线y=2sinx+cosx在点(π,-1)处的切线方程为()A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=012.设函数f(x)=12x2-9lnx在区间[a-1
,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(-∞,2]D.(0,3]二、填空题(本题共4小题,每小题5分,共20分)13.抛物线xy42=上一点到其焦点距离为3,则该点坐标为.14.已知函数f(x)的导函数为f′(
x),且满足f(x)=2xf′(1)+lnx,则f′(1)=________.15.已知椭圆x2a2+y2b2=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若NM→·NF→=0,则椭圆的离心率为()16.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f
′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为()A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞)三.解答题17.某商场为提高服务质量,随机调查了50名男顾客和5
0名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服
务的评价有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(K2≥k)0.0500.0100.001k3.8416.63510.82818.(1)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积
为3.(2)已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=2x,且经过点P(6,4),则双曲线的方程是(C)A.x24-y232=1B.x23-y24=1C.x22-y28=
1D.x2-y24=119.已知函数f(x)=x3+ax2+bx在x=1与x=-23处都取得极值.(1)求函数f(x)的解析式及单调区间;(2)求函数f(x)在区间[-1,2]的最大值与最小值.20.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=B
C=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P-ABCD的体积.21.(本小题12分)已知椭圆)0(1:2222=+babyaxC,点)1,6(−P是椭圆C上一点,离心率
为22.(1)求椭圆C的标准方程;(2)直线l:y=x+m与椭圆C相交于A,B两点,且在y轴上有一点M(0,2m),当ABM面积最大时,求m的值.22.(12分)已知函数f(x)=ex-ax(a∈R).(1)
讨论f(x)的单调性;(2)若f(x)<0在[-1,+∞)上有解,求a的取值范围.吴忠中学2020—2021学年度第二学期高二年级期中考试数学文试题一.选择题1.1+2i1-2i=()A.-45-35iB.-45+35iC.-3
5-45iD.-35+45i解:1+2i1-2i=(1+2i)25=-3+4i5=-35+45i.故选D.2.抛物线y=4x2的焦点坐标为()A.(1,0)B.(2,0)C.(0,18)D.(0,116)解:抛物线y=4x2的
标准方程为x2=14y,故其焦点坐标为(0,116).故选d3.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1B.2个C.3个D.4个解:由f′(x)的图象可知,函数f(x)在区间(a,b)内,
先增,再减,再增,最后再减,故函数f(x)在区间(a,b)内只有一个极小值点.故选A.4.已知双曲线x2a2-y2=1(a>0)的离心率是5,则a=(D)A.6B.4C.2D.12解析:解法1:由双曲线方程可知b2=1,所以c=a2+b2=a2+
1,所以e=ca=a2+1a=5,解得a=12,故选D.解法2:由e=5,e2=1+b2a2,b2=1,得5=1+1a2,得a=12,故选D.5.有下列说法:①若某商品的销售量y(件)关于销售价格x(元/件)的线性回归方程为yˆ=-5x+350,当销售价格为10元时,销售量一定为300件;
②线性回归直线:yˆ=bˆx+aˆ一定过样本点中心;③在残差图中,残差点比较均匀落在水平的带状区域中即可说明选用的模型比较合适,与带状区域的宽度无关;④在线性回归模型中,相关指数R2表示解释变量对于预报变量变化的贡献率,R2越接近于1,表示回归的效果越好.其中正确
的结论个数为()A.1B.2C.3D.4解:对于①,线性回归方程为yˆ=-5x+350,当销售价格为10元时,销售量近似为300件,故①错误;对于②,线性回归直线:yˆ=bˆx+aˆ一定过样本点中心,故②正
确;对于③,与带状区域的宽度有关,带状区域越窄,说明回归方程的预报精确度越高,故④错误;对于④,R2越接近于1,表示回归的效果越好,故⑤正确.所以正确的结论有2个.故选B.6.设F1和F2为双曲线x2a2-y2b2=1(a>0,b>0
)的两个焦点,若F1,F2,A(0,2b)是正三角形的三个顶点,则双曲线的渐近线方程是()A.y=±33xB.y=±3xC.y=±217xD.y=±213x解:由题设可知c2+4b2=2c⇒4b2=3c2,即b2=3a2⇒ba=3.故选B.【点拨】本例考查双曲线
中a,b,c的关系,以及双曲线的渐近线等知识.渐近线方程可以看作是把双曲线方程中的“1”用“0”替换而得到的两条直线方程.7.已知函数f(x)=xlnx,则f(x)()A.在(0,+∞)上单调递增B.在(0,+∞)上单调递减C.在0,1e上单调递增D.在
0,1e上单调递减解:函数f(x)的定义域为(0,+∞),所以f′(x)=lnx+1(x>0).当f′(x)>0时,解得x>1e,即函数的单调递增区间为1e,+∞;当f′(x)<0时,解得0<x<1e,即函数的单调递减区间为0,1e.故选D.8.已知P是椭圆x225+
y29=1上一点,F1,F2分别为椭圆的左、右焦点,且∠F1PF2=60°,则△F1PF2面积为()A.3B.23C.33D.33解析:方法1:由椭圆的标准方程可得a=5,b=3,∴c=4.设|PF1|=t1,|PF2|=t2,由椭圆的定义可得t1+t2=10①.∵在△F
1PF2中,∠F1PF2=60°,∴根据余弦定理可得|PF1|2+|PF2|2-2|PF1||PF2|cos60°=|F1F2|2=(2c)2=64,整理可得t21+t22-t1t2=64②.把①两边平方得t21+t22+2t1t2=100③,由③-②得t1t2=12,∴S
△F1PF2=12t1t2·sin∠F1PF2=33.故选A.方法2:由于椭圆焦点三角形的面积公式为S=b2tanθ2,故所求面积为9tan30°=33.故选c.9.若函数f(x)=x3+ax2+x既有极大值又有极小值,则a的
取值范围是()A.(-∞,-3)B.(-∞,-3)∪(3,+∞)C.(-3,3)D.(3,+∞)答案:b10.椭圆4x2+9y2=144内有一点P(3,2),则以P为中点的弦所在直线的斜率为()A.-23B.-32C.-49D.-94解析:设以P为中点的弦所在的直线与椭
圆交于点A(x1,y1),B(x2,y2),斜率为k,则4x21+9y21=144,4x22+9y22=144,两式相减得4(x1+x2)(x1-x2)+9(y1+y2)(y1-y2)=0,又x1+x2=6,y1+y2=4,y1-y2x1-x2=k,代入解得k
=-23.11.曲线y=2sinx+cosx在点(π,-1)处的切线方程为()A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=0解:因为y′=2cosx-sinx,所以y′|x=π=2cosπ-sinπ=-2,则y=2sinx+
cosx在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.故选C.12.设函数f(x)=12x2-9lnx在区间[a-1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B
.[4,+∞)C.(-∞,2]D.(0,3]解:f′(x)=x-9x(x>0),当x-9x≤0时,有0<x≤3,即函数f(x)的单调递减区间是(0,3],所以0<a-1<a+1≤3,解得1<a≤2.故选A.二、填空题(
本题共4小题,每小题5分,共20分)13.抛物线xy42=上一点到其焦点距离为3,则该点坐标为.14.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(1)=________.解:f′(x)=2f′(1)+1x,令x=1,得f′(1)=2f′(1
)+1,解得f′(1)=-115.已知椭圆x2a2+y2b2=1(a>b>0)的左顶点为M,上顶点为N,右焦点为F,若NM→·NF→=0,则椭圆的离心率为()解:由题意知,M(-a,0),N(0,b),F(c,0),所以NM→=(-a,-b),NF→=(c,-b).因为NM→·NF→=0,
所以-ac+b2=0,即b2=ac.又b2=a2-c2,所以a2-c2=ac,所以e2+e-1=0,解得e=5-12或e=-5-12(舍去).所以椭圆的离心率为5-12.16.已知定义在实数集R上的函数f(x)满足f(
1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为()A.(1,+∞)B.(-∞,-1)C.(-1,1)D.(-∞,-1)∪(1,+∞)解:令g(x)=f(x)-2x-1,所以g′(x)=f′(x)-2<0,所以g(x)在R上
为减函数,g(1)=f(1)-2-1=0.由g(x)<0=g(1),得x>1.故选A.三.解答题17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该
商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(K2≥k)0.0500.0100.001k3.8416.6
3510.828解:(1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)K2=100×(40×20-30×10)2
50×50×70×30=10021≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.18.(1)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△P
OF的面积为3.解析:设P(x0,y0),则x0+1=4,故x0=3,所以y0=±23.又F(1,0),所以S△PFO=12×23×1=3.(2)已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=2x,且经过点P(6,4),则双曲线的
方程是(C)A.x24-y232=1B.x23-y24=1C.x22-y28=1D.x2-y24=1解析:因为双曲线的一条渐近线方程为y=2x,所以ba=2①.又双曲线过点P(6,4),所以6a2-16b2=
1②.①②联立,解得a=2,b=22,所以双曲线的方程为x22-y28=1,故选C.19.已知函数f(x)=x3+ax2+bx在x=1与x=-23处都取得极值.(1)求函数f(x)的解析式及单调区间;(2)求函数f(x)在区间[-1,2]的最
大值与最小值.解:(1)因为f(x)=x3+ax2+bx,所以f′(x)=3x2+2ax+b,因为f(x)在x=1与x=-23处都取得极值,所以f′(1)=0,f′-23=0,即
3+2a+b=0,129-4a3+b=0,解得a=-12,b=-2.即f(x)=x3-12x2-2x,所以f′(x)=3x2-x-2=(3x+2)(x-1),令f′(x)>0⇒x>1或x<-23
,令f′(x)<0⇒-23<x<1,所以f(x)的单调递增区间是-∞,-23,(1,+∞),单调递减区间是-23,1.(2)由(1)可知,x错误!-23-23,11(1,2)f′(x)+0-0+f(x)↗极大值↘极小值↗f(x)的极小值f(1)
=-32,f(x)的极大值f-23=2227,而f(-1)=12,f(2)=2,可得x∈[-1,2]时,f(x)max=2,f(x)min=-32.20.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠AB
C=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P-ABCD的体积.解:(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,故BC∥平面PAD.(2)取AD的中点M,连结PM,CM.由AB=
BC=12AD及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD,因为CM⊂底面ABCD,所以PM⊥CM.设
BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以PN=142x.因为△PCD的面积为27,所以12×2x×142x=27,解得x=-2(舍去),或x=2,于是AB=BC=2,AD=4,PM=23,所以
四棱锥P-ABCD的体积V=13×2×(2+4)2×23=43.21.(本小题12分)已知椭圆)0(1:2222=+babyaxC,点)1,6(−P是椭圆C上一点,离心率为22.(1)求椭圆C的标准方程;(2)直线l:y=x+m与椭圆C相交
于A,B两点,且在y轴上有一点M(0,2m),当ABM面积最大时,求m的值.【答案】解:由题意可得,且,,解得,,则椭圆的方程为;由直线l的方程为,则到直线l的距离,将直线代入椭圆方程可得,由判别式,解得,设,,则,,由弦长公式可得,,当且仅当时取得等号.即当面积最大时,m的值为
.22.(12分)已知函数f(x)=ex-ax(a∈R).(1)讨论f(x)的单调性;(2)若f(x)<0在[-1,+∞)上有解,求a的取值范围.解:(1)因为f(x)=ex-ax(a∈R),所以f′(x)=ex-a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=
0,解得x=lna,f(x)在(lna,+∞)上单调递增,在(-∞,lna)上单调递减.(2)由(1)可知,当a≤0时,f(x)在R上单调递增,因为f(x)<0在[-1,+∞)上有解,所以f(-1)=1e+a<0,则a<-
1e.当a>0时,f(x)在(lna,+∞)上单调递增,在(-∞,lna)上单调递减.①当0<a≤1e时,lna≤-1,f(x)在[-1,+∞)上单调递增,所以f(-1)=1e+a<0,则a<-1e,不符合题意;②当a>1e时,lna>-1,f
(x)在(lna,+∞)上单调递增,在(-1,lna)上单调递减,所以f(x)min=f(lna)=a-alna<0,则a>e.综上,a∈-∞,-1e∪(e,+∞).