【文档说明】高二数学北师大版必修5教学教案:2.1.1正弦定理 (6)含解析【高考】.doc,共(5)页,160.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-ec1af09f0bc3aa0c0dff7f427e63fa8d.html
以下为本文档部分文字说明:
1《正弦定理》教学设计一、教材分析正弦定理是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边与角之间的数量关系。通过创设问题情景,从而引导学生产生探索愿望,激发学生学习的兴趣,并指出解决问题的
关键在于研究三角形中的边、角关系。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:(1)已知两角和一边,解
三角形;(2)已知两边和其中一边的对角,解三角形。二、学情分析本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高一学生对生产生活问题比较感兴
趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。三、教学目标:1.知识与技能:通过创设问题情境,引导学生发现正弦定理,并推证正弦定理。会初步运用正弦定理与三
角形的内角和定理解斜三角形的两类问题。2.过程与方法:引导学生从已有的知识出发,共同探究在任意三角形中,边与其对角正弦的比值之间的关系,培养学生通过观察,猜想,由特殊到一般归纳得出结论的能力和化未知为已知的解决问题
的能力。3.情感、态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。四、教学重点与难点:重点:正
弦定理的探索和证明及其基本应用。2难点:①正弦定理的证明;②了解已知两角和一边,解三角形。五、学法与教法学法:引导学生首先从直角三角形中揭示边角关系:CBAsincsinbsina==接着就在一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,
让学生发现知识之间的联系。教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式(1)新课引入——提出问题,激发学生的求知欲。(2)掌握正弦定理的推导证明——分类讨论,数形结合,动脑思考,由特殊到一般,组织学生自主探索,获得正弦定理及证明过程。(3)例题处理——始终从问题出发,层层设
疑,让他们在探索中自得知识。(4)巩固练习——深化对正弦定理的理解。六、教学过程复习引入:在△ABC中,三个角A,B,C的对边分别为a,b,c,则边与角有哪些对应关系:(1)角的关系为_________________;
(2)边的关系为__________________;(3)边角关系为________________________.(4)Rt△ABC中,C=90°,则又存在什么样的关系呢?1.提出问题,并解决:我们知道,在任意
三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角关系的准确量化的表示呢?回忆直角三角形中的边角关系:根据正弦函数的定义有:sin,sinabABcc==,sinC=1。经过学生思考、交流、讨论得出:sinsinsinabcABC==,问题1:这个结论在任意三角
形中还成立吗?(引导学生首先分为两种情况,锐角三角形和钝角三角形,然后按照化未知CBAcba3为已知的思路,构造直角三角形完成证明。)①当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有=sinCDaB,sinCDbA=。由此,得sinsinabAB=,同理可得sinsi
ncbCB=,故有sinsinabAB=sincC=.从而这个结论在锐角三角形中成立.②当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有==sinsinCDaCB
DaABC,sinCDbA=。由此,得=sinsinabAABC,同理可得=sinsincbCABC故有=sinsinabAABCsincC=.由①②可知,在ABC中,sinsinabAB=sincC=成立.从而得到:在一个三
角形中,各边和它所对角的正弦的比值相等,即sinsinabAB=sincC=.这就是我们今天要研究的——正弦定理思考:你还有其它方法证明正弦定理吗?(由学生讨论、分析)证明:(向量法)过A作单位向量j垂直于AC由AC+CB=AB两边同乘以单位向量j得j•(AC+CB)=j•AB则j•AC+j•C
B=j•ABabDABCABCDba4∴|j||AC|cos90+|j||CB|cos(90C)=|j||AB|cos(90A)∴AcCasinsin=∴Aasin=Ccsin同理,若过C作j垂直于CB得:Ccs
in=Bbsin∴Aasin=Bbsin=Ccsin。(学生自己探索)2、新课正弦定理:Aasin=Bbsin=Ccsin接着给出解三角形的概念:一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形.问题2:你能否从方程的角度
分析一下,解三角形需要已知三角形中的几个元素?问题3:我们利用正弦定理可以解决一些怎样的解三角形问题呢?(1)已知三角形的任意两个角与一边,求其他两边和另一角。(2)已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。我们今
天主要解决第一方面的内容。3.应用:例1、已知△ABC中,a=20,A=30°,C=105°,求B,b,c.例2、见教材P46例14、检测1.在△ABC中,一定成立的等式是()A.asinA=bsinB
B.acosA=bcosB5C.asinB=bsinAD.acosB=bsinA2.在△ABC中,a=5,B=45°,C=105°,求边c.3.△ABC中,c=3,a=1,C=60°则sinA=___5、课堂小结:(学生发言,互相补充,老师评价.)1.正弦定理:Aasin=Bbsin=Ccsin
2.正弦定理的简单应用。3.由特殊到一般的数学思想。6、布置作业:见教材P47T1T2九、教学反思:本设计通过解斜三角形的一个实际问题引导学生发现三角形的边角关系,将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,思路
自然,学生乐于接受。通过引导学生发现直角三角形中的正弦定理,进而探究在任意三角形中是否还成立?将学生带入探索新知的氛围,学生从已有的知识经验出发,探索得出新结论,体验了成功的乐趣,对如何运用定理解决问题也是跃跃欲试,在课堂小结教学中,给学生一个畅所欲言的机会,互相评价,最终得到完善的答
案.这样做,可以锻炼学生的语言表达能力,这也体现了一个人成长、发展所必须经历的过程,对于培养意志品质起到了重要作用.