【文档说明】吉林省吉林市普通中学2021届高三下学期第三次调研测试文科数学答案.pdf,共(4)页,418.409 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-ea0cf13dbd13dde3b1ead45e8b58e6c6.html
以下为本文档部分文字说明:
吉林市普通中学2020—2021学年度高中毕业班第三次调研测试文科数学参考答案一、选择题:本大题共12题,每小题5分,共60分.二、填空题:本大题共4个小题,每小题5分,共20分.其中第16题的第一个空填对得2分,第二个空填对得3分.13.114.,,cba1
5.242516.22143xy(2分),①②③④(3分)17.【解析】(1)mn2cos0mnaaB.0a.........................................3分22cosB,
0B4B.......................................................6分(2)由正弦定理得BbAasinsin2222sin32A23sinA..
........................................9分18.【解析】(Ⅰ)散点图如右图....................1分由散点图可知,管理时间y与土地使用面积x线性相关............................2分依题意:3554321
x,又16y1)2(0)5()1()8()2())((51yyxxiii10210)1()2()(22222251xxii,)(251yyii则4.45435152432061043)()())((21211
niiniiiniiyyxxyyxxr由于75.0947.0,故管理时间y与土地使用面积x线性相关性较强(Ⅱ)22列联表如下:假设0H:该村村民的性别与参与管理的意愿无关2K的观测值82810
25)604060140(3002k.........19.【解析】(1)证明:连.BN连,11HCAAC连MH11,//AHHCAMMBBCMH又MH面CMA1,1BC面CMA1//1BC面CMA1
.................2分四边形NBMA1是平行四边形,MABN1//BN面CMA1,MA1面CMA1//BN面CMA1............................4分11,,BCBNBBCBN面NBC1面//1CMA面NBC1..............
.....................................5分【注:也可以利用CAPNCMNC11//,//证明】PQ面NBC1//PQ面CMA1......................................6分(2)由(1)知,面//1CMA面NBC1.则点B
到面CMA1的距离h即为所求.由1AA面ABC得1AA为锥体CMBA1的高.3422212313111CMBBMCASAAVΔ.............................
.8分MCA1中2222AMACMC,222211ACAACA,222211AMAAMA则328431MCASΔ................................................10分由BMCAMCABVV
11即343231h323220.【解析】解:(Ⅰ)由抛物线的定义知,2321p,解得1p............所以抛物线C的方程为yx22............................焦点)21,0(F.........................
...................(Ⅱ)由(Ⅰ)知焦点)21,0(F,设),(),,(2211yxByxA易知直线l存在斜率,设为k,直线l方程为21kxy,联立yxkxy2212,消去x得:041)1
2(22yky04424kkΔ恒成立,则12221kyy............22||221kpyyAB...........................设原点O到
直线l的距离为1d,12121kd所以121121)1(221||2122211kkkdABS...1S解法二联立yxkxy2212,消去y得:0122kxx,0442kΔ恒成立,则kxx221,121xx(24414)(1||222212
212kkkxxxxkAB设原点O到直线l的距离为1d,12121kd所以121121)1(221||2122211kkkdABS1214421214)(||21||||212221221211kkxx
xxOFxxOFS易知)21,21(kQ设Q到直线l的距离为2d,122222kkd所以1)2(21122)1(221||212222222kkkkkdABS................8分故2111S
S=2121)2()1(21)2(21222222222kkkkkkkk..........9分设112km,1122121211221mmmmmmSS....
............10分当且仅当mm1,即1m时取等号..........................................11分所以2111SS的最大值为1............................................
.......12分21.【解析】解:(Ⅰ)axxexfx)(,则axexfx)1()(...........................1分)(xf有两个极值点,则0)1()(ax
exfx有两个不等实根即ay与)1()(xexHx有两个公共点()(1)xHxex)(Rx)2()(xexHx令0)(xH解得2x.................................................
.....2分)()(xHxH,变化情况如下表所示:x)2,(2),2(2min1)2()(eHxH...............................当x时,)(xH当x时,与一次函数相比xey呈爆炸增长,)(
exxH故)0,1(2ea.............................................(Ⅱ)当0a时,)2ln()2ln()()(xexxxfxgx2(21)(xexgx在)0,2(单调递增,并且011)1(eg,
(也可以取其它点)在)31,1(上存在唯一实数根0x使得0)(0xg.............2100xex,即)2ln(00xx①.................02xx时,0)(
xg,)(xg在),2(0x上单调递减00xx时,0)(xg,)(xg在)0(0,x上单调递增)2ln()()(00min0xexgxgx②..................由①②知,02)1(21)(
)(020000xxxxxgxg1(0x即证当0a时,)0,2(x,0)(xg.....................(Ⅱ)方法二:当0a时,ln()2ln()()(xexxxfxgx令)1()(xexx)02(x再令)2ln(1)(
xxxS)02(x21211)(xxxxS当12x时,0)(xS,)(xS在)1,2(单调递减当01x时,0)(xS,)(xS在)0,1(单调递增0)1()()(m
inSxSxS即)2ln(1xx②..................................................11分由①②知,02x时,)2ln(xex即证当0a时,)0,2(x,0)
(xg.........................................12分22.【解析】(1)sin4sin42.......................................2分0422yyx
即4222yx.......................................4分(2)将直线l参数方程tytx22122(t为参数)代入曲线C4222yx中得:0322tt.....
................................................5分设方程的两根为21,tt则322121tttt.......................................7分021tt1t
与2t异号....................................................8分141222121ttttPBPA...............................10分23.【解析】(Ⅰ)
41,31,25xxxxf.........................................1分50x不等式解集为50xx..........(注:结果不表示成集合或区间扣1分)(Ⅱ)由(Ⅰ)知,xf在1,上单调递减,
,4上单调3minxf3M..........................解法1:3ba612ba1121ba12112161baba3222611221261
baab...............解法2:由柯西不等式得:1121ba12112161baba3264111221612bba
a...当且仅当312baba时,即2,1ba时..........1121ba的最小值为32.......................