【文档说明】河北省沧州市大数据联考2023-2024学年高二上学期10月月考试题+数学+含答案.docx,共(9)页,516.680 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-e558d633e10bc339a613e4d8f9b1e735.html
以下为本文档部分文字说明:
河北省高二年级上学期10月联考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在
本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:空间向量与立体几何,直线.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若经过点()3,An和()2,1B的直线的斜率为2,则n=()
A.1B.2C.3D.42.已知点()0,4A,斜倾角为45°的直线l经过点()2,0B,M是直线l上一点,若ABM的面积为32,则BM=()A1B.2C.4D.83.已知AE垂直于正方形ABCD所在平面,若1AB
=,3AE=,则平面ABE与平面CDE夹角的大小是()A.30°B.45°C.60°D.90°4.在四面体OABC中,OAa=,OBb=,OCc=,()0OMMA=,N为BC的中点,若311422MNabc=−++,则=()A.13B.3C.12D
.25.如图,三棱锥SABC−的棱长均为a,点E,F,G分别是SA,SC,BC的中点,则2a−等于().的A.2ASABB.2FGSBC.4FGEFD.4EFBA6.如图,二面角l−−等于135°,A,B是棱l上两点,BD,AC分别在半平面,内,ACl⊥,BDl
⊥,且2ABAC==,2BD=,则CD=()A23B.22C.14D.47.如图,11AB,AB分别是圆台上、下底面圆的直径,1122ABABa==,1C是圆1O上一点,且111π3BOC=,则1A
Cuuur在a上的投影向量是()A.54aB.53aC.52aD.43a8.在空间直角坐标系中,已知()1,0,1A,()1,1,1B−,()2,2,1C−,则点B到直线AC的距离为()A.13B.33C.23D.1二、选择题:本题共4小题,
每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l:240xy−+=,直线2l:()1420axy−++=,下列结论正确的是()A.直线2l可能
不存在斜率B.直线2l恒过点10,2−C.若12ll⊥,则9a=D.点P和点Q分别是直线1l,2l上的动点,若12ll∥,则PQ的最小值是510.已知AB平面,AC⊥,BDAB⊥,BD与平面成30角,2ABACBD===,则
C与D.之间的距离可能是()A.22B.23C.4D.2511.已知直线l:()1340axaya+−−−=,O为坐标原点,下列说法正确的是()A.若0a,则a越大,直线的倾斜角越小B.若直线l关于直线4x=对称直线方程是290xy+−=,则1a=C.若直线l过定点
P,直线m经过P和原点O,则直线m围绕点P旋转45°后得到的直线方程是53170xy−−=或35130xy+−=D.若直线l与x轴、y轴的正半轴分别交于A,B两点,当OAOB+最小时,23a=−12.清初著名数学家孔林宗曾提出一种“蒺藜形多面体”,
其可由两个正交的正四面体组合而成,如图1,也可由正方体切割而成,如图2.在图2所示的“蒺藜形多面体”中,若2AB=,则给出的说法中正确的是()图1图2A.该几何体的表面积为183B.该几何体的体积为4C.二面角B
EFH−−的余弦值为13−D.若点P,Q在线段BM,CH上移动,则PQ的最小值为233三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知点()1,3A−和()3,5B−,则直线AB的倾斜角为___
______.14.一条光线从点()7,5P射入,经x轴反射后沿直线30xay−+=射出,则=a_________.15.已知直线20xy−=与直线310xy−−=的交点为P,()1,2a=−r为直线60mxy++=的一个方向向量,则点P关于直线60mxy++=的对称点的坐标是___
______.的16.如图,正方体1111ABCDABCD−的棱长为2,E是AB的中点,点M,N分别在直线1DE,CD上,则线段MN的最小值为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知点()2,1A,()0,3B,()1,
2C−.(1)求直线AB的倾斜角,并写出直线BC的点斜式方程;(2)求点A到直线BC的距离.18.已知直线1l的方程为40xy+−=,若直线2l在y轴上的截距为2−,且12ll⊥.(1)求直线1l和2l交点坐标;(2)已知直线3l经过1l与2l的交点
,且2l与x轴、y轴的正半轴围成的三角形的面积为6,求直线3l的方程.19.如图,在直三棱柱111ABCABC-中,1333CCCACB===,90ACB=,点M是11AB的中点,113ANAA=.(1)证明:1BNCM⊥.(2)求直线1CB与BN所
成角的余弦值.20.如图,在长方体1111ABCDABCD−中,1122ABADAA===,P为棱1DD的中点.的(1)证明:1BD∥平面PAC.(2)若Q是线段PD的中点,求1AQC的面积.21.将ABC沿它的中位线DE折起,使顶点C到达点P的位置,使得PAPE=,得到如图所示的四棱锥P
ABDE−,且22ACAB==,ACAB⊥,F为PB的中点.(1)证明:DE⊥平面PAE.(2)求平面PAE与平面ADF夹角的余弦值.22.在三棱台111ABCABC−中,1CC⊥平面ABC,1122ABBCACAB====,D,E分别为AC,BC的中点.(1)
证明:1AB∥平面1CDE.(2)若11BCAC^,在线段AB上是否存在一点F,使得1CF与平面11ABBA所成角的正弦值为2114?若存在,求AF的长度;若不存在,请说明理由.河北省高二年级上学期10月联考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填
写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试
内容:空间向量与立体几何,直线.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】A
【8题答案】【答案】D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.【9题答案】【答案】BCD【10题答案】【答案】AC【11题答案】【答案】BD【12题答案】【答案】BCD三、
填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.【13题答案】【答案】3π4【14题答案】【答案】2−【15题答案】【答案】()7,2−−【16题答案】【答案】2四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.【17题答案】
【答案】(1)135°,30yx−=−或写成21yx−=+(注:写一个即可)(2)22【18题答案】【答案】(1)()3,1(2)360xy+−=【19题答案】【答案】(1)证明见解析(2)3015【20题答案】【答案】(1)证明见解析(2)14【21题答案】【答案】(1)证明见解析(2)
33【22题答案】【答案】(1)证明见解析获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com