【文档说明】河南省济源市、平顶山市、许昌市2021-2022学年高三第二次质量检测 文科数学.pdf,共(11)页,591.867 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-e0e4720608ba2c0ddeea2622b44c9748.html
以下为本文档部分文字说明:
1平顶山许昌济源2021-2022学年高三第二次质量检测文科数学参考答案一、选择题:本题共12小题,每小题5分,共60分。1.B2.D3.C4.A5.C6.D7.B8.A9.A10.B11.D12.B二、填空题:本题共4小题,每小题5分,共20分。13.314
.2315.2022404516.(0,2)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。17.(12分)解:(1)因为cossinaCcAsincossinsin(sin0)ACCAA
由正弦定理得cossin,0<C<,CC又4C···········································4分(2)因为2234sin()cosBcA+=-2423
sin()cosBCA\+=-ABC,242332223sincossincossin()AAAAA\=-\+=\+=326AA\+=Þ=··········································
·8分由正弦定理可得sinsinacAC,则24sin22si2n122cAaC···········································10分117224223221
2sinsin.ABCSacB==+········································12分18.(12分)解:(1)由折线图中数据及题中给出的参考数据,可得2174,28iittt,·······················
····················(2分)所以7712211712670.8832727iiiiiiittyyrttyy,·············(4分)即y与t的
相关系数近似值为0.88[0.75,1],所以相关性很强;·············(5分)(2)由71259iiy,得259377y,······························
···(6分)又71721126ˆ4.528iiiiittyybtt,··································(8分)ˆˆ374.5419aybt,所以y关于t的回归
方程为4.519yt;·······························(10分)(3)将2022年对应的8t代入回归方程4.519yt,得4.581955y,所以预测2022年该市某家庭教育支出将达到家庭总支出的0055,因此当某家庭总支出为10万元
时,家庭教育支出约为0010555.5万元.......(12分)19.(12分)解:(1)证明:∵DC面ABC,BC平面ABC∴DCBC∵AB是圆O的直径∴BCAC且DCACC∴BC平面
ACD...........................................................(3分)3∵四边形DCBE为平行四边形∴//BCDE∴DE平面ACD又DE平面ADE∴平面ADC平面ADE;.......................
....................................(6分)(2)在RtABC中,2AB,设CAB,则2cos,2sinACBC∴1sin212ABCSACBC,等号当且仅当4时成立;..............(10分)又因为
2BE∴121233ACBEEABCVV,所以三棱锥ACBE体积的最大值为23..................(12分)20.(12分)解:(1)抛物线22(0)pypx的焦点为(0,)2pF,设(,)2
pNt,则(0,),(,)22ppOFONt因为1OFON,所以214p,得2p所以抛物线的方程为24xy;....................
.......................................(4分)(2)依据圆与抛物线的对称性,四边形ABCD是以y轴为对称轴的等腰梯形,不妨设ABCD,,AD在第一象限,1122(,),(,)Ax
yDxy,则1122(,),(,)BxyCxy,12yy,联立222(3)52xyxpy消去x得2(62)40ypy,显然关于y的一元二次方程有互异二正根,所以21212621
606204pyypyy,解得1p,而0p,所以01p............(6分)4依据对称性可知,点G在y轴上,可设(0,)Gt,由AGACkk得,112112ytyyxxx,所以1211211222()2yyyty
ypypyyp则122tyy,所以点(0,2)G;...........................................................(8分)121111212112()2[2()2(2
)]2(2)22(2)22ABDABGSSSxyyxyxypyy122121121222(2)22(22)422pyyyypyypyyyy=(1)42(62
)48(1)842pppppp,等号当且仅当12p时成立,所以12p时,S取得最大值4............................................................(12分)21.解:(1)()fx的定义域是(0,)...
........................................(1分)当22ae时,2()2(ln)xfxxeexx,21'()(2)xxfxxeex,当02x时,'()0fx;当2x时,'()0f
x......................................(3分)所以函数()fx的单调递减区间为(0,2),单调递增区间为(2,)..............................(4分)(2)()fx的定义域是(0,),
1'()()xxfxxeax,....................................(5分)令()xgxxea,则易知()gx在(0,)上单调递增,因为0a,所以00ga,又x时,()gx故存在唯一0(0,)x,使得0()
0gx,即00xxea当00,xx时,0gx,'()0fx,()fx单调递减;5当0,xx时,0gx,'()0fx,()fx单调递增;故0xx时,()fx取得最小值,······
·······························(9分)故00000()ln()ln()xxMfxxeaxeaaa···················(10分)记()ln
(),0haaaaa,所以'()ln()haa当(1,0)a时,'()0ha,()ha单调递减,当(,1)a时,'()0ha,()ha单调递增,故1a时,()ha取最大值1
,故1M···························(12分)22.解:(1)因为直线l的参数方程为2,2()21,2xttyt为参数,则直线l的普通方程为10xy......
...............................................................(2分)因为曲线C:4sin3122,则曲线C的直角坐标方程为2244xy,即2214xy.......................(5分)
(2)易知,点(1,0)A在直线l上,直线l的斜率为-1,所以可设直线l的参数方程为21,22,2xtyt(t为参数),代入曲线C的直角坐标系方程得252260tt.则12225tt,1265tt.
................................................................(6分)所以M对应的参数120225ttt,故2121200226
()4()||+||||||+||55=8||||||25ttttAPAQAMtt............................(10分)23.解:(1)5,2()33,215,1
xxfxxxxx............................................................(2分)6由题意得22115033050xxxxxx<--<-->+>+>或或5111xxx\<-
-<<或或不等式的解集为51(,)(,)-¥-È-+¥...........................................................(5分)(2)若0xR,使00()40fxax,则函数()yfx
的图像与直线4yax有公共点.......................................................(6分)直线4yax恒过点(0,4)P,令点(2,3),A则直线
PA的斜率4(3)10(2)2PAk,..................................................(8分)结合()fx的图像可知,当12a或1a时,函数(
)yfx的图像与直线4yax有公共点,所以实数a的取值范围为1,(1,).2.....................................................10分)获得更多资源请扫码加入
享学资源网微信公众号www.xiangxue100.com