河南省济源市、平顶山市、许昌市2021-2022学年高三第二次质量检测 理科数学

PDF
  • 阅读 1 次
  • 下载 0 次
  • 页数 11 页
  • 大小 618.099 KB
  • 2024-12-10 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【envi的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
河南省济源市、平顶山市、许昌市2021-2022学年高三第二次质量检测 理科数学
可在后台配置第一页与第二页中间广告代码
河南省济源市、平顶山市、许昌市2021-2022学年高三第二次质量检测 理科数学
可在后台配置第二页与第三页中间广告代码
河南省济源市、平顶山市、许昌市2021-2022学年高三第二次质量检测 理科数学
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有1人购买 付费阅读2.40 元
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】河南省济源市、平顶山市、许昌市2021-2022学年高三第二次质量检测 理科数学.pdf,共(11)页,618.099 KB,由envi的店铺上传

转载请保留链接:https://www.doc5u.com/view-16c49ea9d3051b5022814f6c389d8465.html

以下为本文档部分文字说明:

1平顶山许昌济源2021-2022学年高三第二次质量检测理科数学参考答案一、选择题:本题共12小题,每小题5分,共60分。1.D2.B3.C4.C5.B6.B7.D8.A9.A10.D11.D12.B二、填空题:本

题共4小题,每小题5分,共20分。13.-114.4515.02(,)16.10114045三、解答题:共70分。17.解:(1)因为2coscosbcCaA,所以2coscosbcAaC,所以2sincossincoscossinsinsi

nBAACACACB,············(3分)因为sin0B,所以1cos2A,因为0,πA,所以π3A;···············································(6分)(2)因为1344BDBABC

,所以3ADDC,所以113sin4816BCDABCSSbcAbc△△,·································(8分)因为2222cosabcbcA,所以2216bcbcbc

,当且仅当bc时等号成立,所以3316BCDSbc△,················································(11分)所以BCD面积的最大值为3············································(1

2分)18.解:(1)相关系数为212211niiinniiiixxyyrxxyy22211222211ˆˆnniiiixxinnyyiiiixxxxyynssbbnssxxyy

24.70.94[0.75,1]50=´=η·············································(6分)故y与x线性相关较强········

···········································(7分)(2)22100(35301520)9.0917.87950504555K·······

·····················(11分)所以有99.5%的把握认为购买电动汽车与性别有关····(12分)19.解:(1)因为12BEEC,12DFFC,所以//EFBD,因为EF平面A

BD,所以//EF平面ABD,·····························(2分)因为G是ABC的重心,12BEEC,所以GEAB∥,因为GE平面ABD,所以//GE平面ABD;因为GEEFE,所以平面//GEF平面AB

D·························(5分)(2)因为//GEAB,所以GEBC,因为DC平面ABC,所以GECD,因为,BCCD平面BCD,BCCDC,所以GE平面BCD,因为EF平面BCD,所以GEEF,所以当点P与E重合时,GP最短;·········

····························(7分)如图,在平面ABC内,作CHBC,以C为坐标原点,CB为x轴,CH为y轴,CD为z轴,建立空间直角坐标系,则(1,3,0)A,0,0,0C,0,0,2D,2(,0,0)

3P,所以1(,3,0)3AP,2(,0,2)3DP,(1,3,0)CA,(0,0,2)CD设111(,,)mxyz为平面ADP的一个法向量,则00mAPmDP

,即111113032203xyxz,令13x,得3(3,,1)3m;设222(,,)nxyz为平面ADC的一个法向量,3则00nCAnCD,即2223020xyz令

23x,得(3,3,0)n;10531cos,31||||31123mnmnmn·····················(11分)所以二面角PADC的余弦值为53131.························

·····(12分)20.解:(1)抛物线22(0)pypx的焦点为(0,)2pF,设(,)2pNt,则(0,),(,)22ppOFONt因为1OFON,所以214p,得2p所以抛物线的方程为24xy;···············

·············(4分)(2)依据圆与抛物线的对称性,四边形ABCD是以y轴为对称轴的等腰梯形,不妨设ABCD,,AD在第一象限,1122(,),(,)AxyDxy,则1122(,),(,)Bx

yCxy,12yy,联立222(3)52xyxpy消去x得2(62)40ypy,显然关于y的一元二次方程有互异二正根,所以21212621606204pyypyy

,解得1p,而0p,所以01p..............................(6分)依据对称性可知,点G在y轴上,可设(0,)Gt,由AGACkk得,112112ytyyxxx,所以1211211222()2yyytyypypyyp

则122tyy,所以点(0,2)G;························(8分)4121111212112()2[2()2(2)]2(2)22(2)22ABDABGSSSxyyxyxypyy

122121121222(2)22(22)422pyyyypyypyyyy=(1)42(62)48(1)842pppppp,等号当且仅当12p时成立,所以12p时,S取得最大值

4·························(12分)21.(12分)解:(1)当14a时,21()sincos4fxxxxx,则1'()(cos),(,)2fxxxx·····························(2分)令'()0fx,得

3x或03x;令'()0fx,得03x或3x··························(4分)所以()fx在(π,π)-上的增区间为(,),(0,)33,减区间为(,0),

(,)33·····(5分)(2)由题知:1()sintan,(,)322gxxxxx①(0)0g,0x是函数()gx的一个零点;·······················

(6分)②当(,0)2x时,sin0,tan0xx,()0gx所以函数()gx在(,0)2上无零点;·······························(7分)③当(0,)2x时,由()0gx得3cos10xx记()

3cos1,(0,)2hxxxx,'()3cos3sinhxxxx,5记()cossin,(0,)2uxxxxx,则'()2sincos0uxxxx,所以函数()ux在(0,)2单调递减,又(4)2()0,()04822uu,所以存在唯一实数0

(,)42x,使得0()0ux,且0(0,)xx时,()0ux,则'()0hx,所以()hx在0(0,)x上单调递增,0(,)2xx时,()0ux,则'()0hx,所以()hx在0(,)2x上单调递减;易知:032(

)()1048hxh,又(0)10,()102hh所以函数()hx在0(0,)x和0(,)2x上各有一个零点,所以函数()gx在(0,)2上有且仅有两个零点··························

·(11分)综上:函数()gx在(,)22上有且仅有三个零点.···················(12分)22.解:(1)因为直线l的参数方程为2,2()21,2xttyt为参数,则直线l的普通方程为10xy.........

............................................................(2分)因为曲线C:4sin3122,则曲线C的直角坐标方程为2244xy,即2214xy.......................(5分)(2)易知

,点(1,0)A在直线l上,直线l的斜率为-1,所以可设直线l的参数方程为621,22,2xtyt(t为参数),代入曲线C的直角坐标系方程得252260tt.则12225tt,1265tt所以M对应的参数120225t

tt,故2121200226()4()||+||||||+||55=8||||||25ttttAPAQAMtt............................(10分)23.解:(1)5,2()33,215,1xxfxxx

xx···············(2分)由题意得22115033050xxxxxx<--<-->+>+>或或„5111xxx\<--<<或或不等式的解集为51(,)(,)-¥-È-+¥····················(

5分)(2)若0xR,使00()40fxax,则函数()yfx的图像与直线4yax有公共点.····················(6分)直线4yax恒过点(0,4)P,令点(2,3),A则直线PA的斜率4(3)10(2)2PAk,·······

·········(8分)结合()fx的图像可知,当12a或1a时,函数()yfx的图像与直线4yax有公共点,所以实数a的取值范围为1,(1,).2·············

···(10分)获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

envi的店铺
envi的店铺
欢迎来到我的店铺
  • 文档 132728
  • 被下载 7
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?