【文档说明】《四川中考真题数学》2020年四川省达州市中考数学试卷(1).pdf,共(29)页,656.773 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-d9c9e196eb829814cdea16374592c0f6.html
以下为本文档部分文字说明:
2020年四川省达州市中考数学试卷一、单项选择题(每小题3分,共30分)1.(3分)人类与病毒的斗争是长期的,不能松懈.据中央电视台报道,截止北京时间2020年6月30日凌晨,全球新冠肺炎患者确诊病例达到1002万.1002万用科学记数法表示,正确
的是()A.1.002×107B.1.002×106C.1002×104D.1.002×102万2.(3分)下列各数中,比3大比4小的无理数是()A.3.14B.C.D.3.(3分)下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A.B.C.D.4.(3分)下列说法正确的
是()A.为了解全国中小学生的心理健康状况,应采用普查B.确定事件一定会发生C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98D.数据6、5、8、7、2的中位数是65.(3分)图2是图1中长方体的三视图,用S表示面积,S主
=x2+3x,S左=x2+x,则S俯=()A.x2+3x+2B.x2+2x+1C.x2+4x+3D.2x2+4x6.(3分)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是()A.12(m﹣1)B.4m
+8(m﹣2)C.12(m﹣2)+8D.12m﹣167.(3分)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是()A.10B
.89C.165D.2948.(3分)如图,在半径为5的⊙O中,将劣弧AB沿弦AB翻折,使折叠后的恰好与OA、OB相切,则劣弧AB的长为()A.πB.πC.πD.π9.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c
的图象可能是()A.B.C.D.10.(3分)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形
.正确判断的个数是()A.4B.3C.2D.1二、填空题(每小题3分,共18分)11.(3分)2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“
伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序
是.12.(3分)如图,点P(﹣2,1)与点Q(a,b)关于直线l(y=﹣1)对称,则a+b=.13.(3分)小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为5
2°.若测角仪的高度是1m,则大树AB的高度约为.(结果精确到1m.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)14.(3分)如图,点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,连接
OA、OB,则△OAB的面积是.15.(3分)已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径=.16.(3分)已知k为正整数,无论k取何值,直线11:y=kx+k+1与直线12:y=
(k+1)x+k+2都交于一个固定的点,这个点的坐标是;记直线11和12与x轴围成的三角形面积为Sk,则S1=,S1+S2+S3+…+S100的值为.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.(5
分)计算:﹣22+()﹣2+(π﹣)0+.18.(7分)求代数式(﹣x﹣1)÷的值,其中x=+1.19.(7分)如图,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM交⊙O于点D,过点D作DE⊥BA于点E.(1)尺规作图(不写作法,保留作图痕
迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.20.(7分)争创全国文明城市,从我做起.尚理中学在八年级开设了文明礼仪校本课程,为了解学生的学习情况,随机抽取了20名学生的测试成绩,分数如下:9483908694889
6100898294828489889398949392整理上面的数据,得到频数分布表和扇形统计图:等级成绩/分频数A95≤x≤100aB90≤x<958C85≤x<905D80≤x<854根据以上信息,解答下列问题.(1)填空:a=,b=;(2)若成绩不低于90分为
优秀,估计该校1200名八年级学生中,达到优秀等级的人数;(3)已知A等级中有2名女生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.21.(8分)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转1
80度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.22.(8分)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如下表:原进价(元/张)零售价(元/张)成套售价(
元/套)餐桌a380940餐椅a﹣140160已知用600元购进的餐椅数量与用1300元购进的餐桌数量相同.(1)求表中a的值;(2)该商场计划购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.若将一半的餐桌成套(一张餐桌
和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售,请问怎样进货,才能获得最大利润?最大利润是多少?23.(8分)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PE⊥PA交射线CD
于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.831.331.
501.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm…1.172.002.502.672.502.001.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,
我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.24.(10分)(1)[阅读与证明]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关
于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.①完成证明:∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠
3+∠4=180°,∴∠1+∠3=°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=°.②求证:BF=AF+2FG.(2)[类比与探究]把(1)中的“正△ABC”改为“正方形ABDC”,其余条件不变,如图2.类比探究,可得:①∠FEG=°;②线段BF、AF、FG之
间存在数量关系.(3)[归纳与拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于
点F、G.则线段BF、AF、GF之间的数量关系为.25.(12分)如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另
一点C(﹣1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,
当△MAB的面积最大时,求MN+ON的最小值.2020年四川省达州市中考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数
.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1002万用科学记数法表示为1.002×107,故选:A.【点评】此题考查了科学记数法的表示方法.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求
解.【解答】解:3=,4=,A、3.14是有理数,故此选项不合题意;B、是有理数,故此选项不符合题意;C、是比3大比4小的无理数,故此选项符合题意;D、比4大的无理数,故此选项不合题意;故选:C.【点评】此题主要考查了无
理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.3.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、手的对面是勤,不符合题意;B、手的对面是口,符合题意;C、手的对面是罩,不符合题意;D、手的对面是罩,不
符合题意;故选:B.【点评】考查了正方体相对两个面上的文字的知识,解题的关键是将手确定为正面,然后确定其对面,难度不大.4.【分析】根据抽样调查与普查的区别、确定性事件的概念、众数和中位数的定义逐一求解可得.【解答】解:A.为了解全国中小学生的心
理健康状况,应采用抽样调查,此选项错误;B.确定事件一定会发生,或一定不会发生,此选项错误;C.某校6位同学在新冠肺炎防疫知识竞赛中成绩分别为98、97、99、99、98、96,那么这组数据的众数为98和99,此选项错误;D.数据6、5
、8、7、2的中位数是6,此选项正确;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.抽样调查与普查的区别、众数和中位数的定义.5.【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【解答】解:∵S主=x2+3
x=x(x+3),S左=x2+x=x(x+1),∴俯视图的长为x+3,宽为x+1,则俯视图的面积S俯=(x+3)(x+1)=x2+4x+3,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、
上面和左侧面的形状,以及几何体的长、宽、高.6.【分析】正方体有12条棱,每条棱上的小球数为m,则有12m个小球,而每个顶点处的小球重复计算2次,则正方形边上的所有小球的个数为12m﹣8×2=12m﹣16,再
将各选项化简即可.【解答】解:由题意得,当每条棱上的小球数为m时,正方体上的所有小球数为12m﹣8×2=12m﹣16.而12(m﹣1)=12m﹣12≠12m﹣16,4m+8(m﹣2)=12m﹣16,12(m﹣2)+8
=12m﹣16,所以A选项表达错误,符合题意;B、C、D选项表达正确,不符合题意.故选:A.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.7.【分析】根据计数规则可知,从右
边第1位的计数单位为50,右边第2位的计数单位为51,右边第3位的计数单位为52,右边第4位的计数单位为53……依此类推,可求出结果.【解答】解:2×53+1×52+3×51+4×50=294,故选:D.【点评】本题考查用数字表
示事件,理解“逢五进一”的计数规则是正确计算的前提.8.【分析】作O点关于AB的对称点O′,连接O′A、O′B,如图,利用对称的性质得到OA=OB=O′A=O′B,则可判断四边形OAO′B为菱形,再根据切线的性质得到O′A⊥OA,O′B⊥O
B,则可判断四边形OAO′B为正方形,然后根据弧长公式求解.【解答】解:如图,作O点关于AB的对称点O′,连接O′A、O′B,∵OA=OB=O′A=O′B,∴四边形OAO′B为菱形,∵折叠后的与OA、OB相切,∴
O′A⊥OA,O′B⊥OB,∴四边形OAO′B为正方形,∴∠AOB=90°,∴劣弧AB的长==π.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了对称的性质和弧长公式.9.【分析】根据题意和题目中给出的函数图象,可以得到函数y
=ax2+(b﹣k)x+c的大致图象,从而可以解答本题.【解答】解:设y=y2﹣y1,∵y1=kx,y2=ax2+bx+c,∴y=ax2+(b﹣k)x+c,由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,故选
项B符合题意,选项A、C、D不符合题意;故选:B.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【分析】由矩形得EB=ED=EA,∠BAD为直角,再由等腰三角形的三线合一性质可判断①的正误;
证明△AOF≌△ABD,便可判断②的正误;连接BF,由线段的垂直平分线得BF=DF,由前面的三角形全等得AF=AB,进而便可判断③的正误;由直角三角形斜边上的中线定理得AG=OG,进而求得∠AGE=45°,由矩形性质得ED=EA,进而得∠
EAD=22.5°,再得∠EAG=90°,便可判断④的正误.【解答】解:①∵四边形ABCD是矩形,∴EB=ED,∵BO=DO,∴OE平分∠BOD,故①正确;②∵四边形ABCD是矩形,∴∠OAD=∠BAD=90°,∴∠ABD+∠ADB=90°
,∵OB=OD,BE=DE,∴OE⊥BD,∴∠BOE+∠OBE=90°,∴∠BOE=∠BDA,∵∠BOD=45°,∠OAD=90°,∴∠ADO=45°,∴AO=AD,∴△AOF≌△ABD(ASA),∴OF=BD,故②正确;③∵△AOF≌△
ABD,∴AF=AB,连接BF,如图1,∴BF=,∵BE=DE,OE⊥BD,∴DF=BF,∴DF=,故③正确;④根据题意作出图形,如图2,∵G是OF的中点,∠OAF=90°,∴AG=OG,∴∠AOG=∠OAG,∵∠AOD=45°,OE平分∠AOD,∴∠AOG=∠OAG=22.5
°,∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,∵四边形ABCD是矩形,∴EA=ED,∴∠EAD=∠EDA=22.5°,∴∠EAG=90°,∵∠AGE=∠AOG+∠OAG=45°,∴∠AEG=45°,∴AE
=AG,∴△AEG为等腰直角三角形,故④正确;故选:A.【点评】本题主要考查了矩形的性质,等腰三角形的性质,等腰直角三角形,全等三角形,关键是熟记这些图形的性质.二、填空题(每小题3分,共18分)11.【分析】根据扇形统计图的制作步骤求解可
得.【解答】解:正确的统计顺序是:②收集三个部分本班学生喜欢的人数;③计算扇形统计图中三个部分所占的百分比;①绘制扇形统计图;故答案为:②③①.【点评】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分
数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.12.【分析】利用轴对称的性质求出点Q的坐标即可.【解答】解:∵点P(﹣2,1)与点Q(a,b)关于直线l(y=
﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.【点评】本题考查坐标与图形变化﹣对称,解题的关键是理解题意,灵活运用所学知识解决问题.13.【分析】过点D作DE⊥AB,构造直角三角形,利用直角三角形的边角关系,求出AE
,进而求出AB即可.【解答】解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8,∠ADE=52°,BE=CD=1在Rt△ADE中,AE=DE•tan∠ADE=8×tan52°≈10.24,∴AB=AE+BE=10.24
+1≈11(米)故答案为:11.【点评】本题考查直角三角形的边角关系,掌握直角三角形的边角关系是正确计算的前提,构造直角三角形是解决问题的关键.14.【分析】根据图象上点的坐标特征求得A、B的坐标,将三角形AOB的面积转化为梯形ABED的面积,根据坐标可求出梯形的面积即可,【解答】
解:∵点A、B在反比函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABE
D,∴S△AOB=(4+2)×(6﹣3)=9,故答案为9.【点评】此题考查了反比例函数系数k的几何意义,关键是掌握y=(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.【分析
】由非负性可求a,b,c的值,由勾股定理的逆定理可证△ABC是直角三角形,∠ABC=90°,由面积法可求△ABC的内切圆半径.【解答】解:∵b+|c﹣3|+a2﹣8a=4﹣19,∴|c﹣3|+(a﹣4)2+()2=0,∴c=3,
a=4,b=5,∵32+42=25=52,∴c2+a2=b2,∴△ABC是直角三角形,∠ABC=90°,设内切圆的半径为r,根据题意,得S△ABC=×3×4=×3×r+×4×r+×r×5,∴r=1,故答案为:1.【点评】本题考查了三角形的内切圆与内心,勾股定理的逆定理,利用三角形面积公
式求内切圆半径是本题的关键.16.【分析】变形解析式得到两条直线都经过点(﹣1,1),即可证出无论k取何值,直线l1与l2的交点均为定点(﹣1,1);先求出y=kx+k+1与x轴的交点和y=(k+1)x+k+2与x轴的
交点坐标,再根据三角形面积公式求出Sk,求出S1=×(1﹣)=,S2=×(),以此类推S100=×(﹣),相加后得到×(1﹣).【解答】解:∵直线11:y=kx+k+1=k(x+1)+1,∴直线11:y=kx+k+1经过点(﹣1,1);∵直线1
2:y=(k+1)x+k+2=k(x+1)+(x+1)+1=(k+1)(x+1)+1,∴直线12:y=(k+1)x+k+2经过点(﹣1,1).∴无论k取何值,直线l1与l2的交点均为定点(﹣1,1).∵直线11:y=kx+k
+1与x轴的交点为(﹣,0),直线12:y=(k+1)x+k+2与x轴的交点为(﹣,0),∴SK=|﹣+|×1=,∴S1==;∴S1+S2+S3+…+S100=[++…]=[(1﹣)+()+…+(﹣)]=×(1﹣
)==.故答案为(﹣1,1);;.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共72分)17.【分析】直接利用零指数幂的性质和立方
根的性质、负整数指数幂的性质分别化简得出答案.【解答】解:原式=﹣4+9+1﹣5=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(﹣)÷=÷=•=﹣x(x﹣1)当
x=+1时,原式=﹣(+1)(+1﹣1)=﹣(+1)×=﹣2﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.19.【分析】(1)根据要求,利用尺规作出图形即可.(2)证明直线DE是⊙O的切线即可解决问题.【解答】解:(1)如图,⊙O,射线BM,直线D
E即为所求.(2)直线DE与⊙O相切,交点只有一个.理由:∵OB=OD,∴∠ODB=∠OBD,∵BD平分∠ABC,∴∠ABM=∠CBM,∴∠ODB=∠ABD,∴OD∥AB,∵DE⊥AB,∴DE⊥OD,∴直线DE是⊙O的切线,∴⊙O与直线DE只有一
个交点.【点评】本题考查作图﹣复杂作图,切线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.20.【分析】(1)由四个等级的人数之和等于总人数可得a的值,利用百分比的概念可得b的值;(2)用总人数乘以样本中A、B等级人数和
所占比例,即可得出结论;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)由题意知a=20﹣(8+5+4)=3,b%=×100%=40%,即b=40;故答案为:3,40;(2)估计该校1200名八年级学生中,达到优秀等级的人数为1200×
=660(人);(3)列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,∴恰好抽到一男一女的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状
图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)结论:四边形ABDF是菱形.根据一组邻边相等的平行四边形是菱形证明.(2)设OA=x,OB=y
,构建方程组求出2xy即可解决问题.【解答】解:(1)结论:四边形ABDF是菱形.∵CD=DB,CE=EA,∴DE∥AB,AB=2DE,由旋转的性质可知,DE=EF,∴AB=DF,AB∥DF,∴四边形ABDF是平行四边形,∵BC=2A
B,BD=DC,∴BA=BD,∴平行四边形ABDF是菱形.(2)连接BF,AD交于点O.∵四边形ABDF是菱形,∴AD⊥BF,OB=OF,AO=OD,设OA=x,OB=y,则有,∴x+y=4,∴x2+2xy+y2=16,∴2xy=7,∴S菱形ABDF=×BF×AD=2
xy=7.【点评】本题考查中心对称,三角形的面积,三角形的中位线定理,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)根据数量=总价÷单价,即可得出结论,解之经检验后即可得出a值;(2)设购进餐桌x张,则购进餐椅(5
x+20)张,由餐桌和餐椅的总数量不超过200张,可得出关于x的一元一次不等式,解之即可得出x的取值范围,设销售利润为y元,根据销售方式及总利润=单件(单套)利润×销售数量,即可得出y关于x的函数关系式,利用一次函数的性质即可解决最值问题.【解答
】解:(1)根据题意得:,解得a=260,经检验,a=260是原分式方程的解.答:表中a的值为260.(2)设购进餐桌x张,则购进餐椅(5x+20)张,根据题意得:x+5x+20≤200,解得:x≤30.设销售利润为y元,根据题意得:y=[940﹣260﹣4×(2
60﹣140)]×x+(380﹣260)×x+[160﹣(260﹣140)]×(5x+20﹣4×x)=280x+800,∵k=280>0,∴当x=30时,y取最大值,最大值为:280×30+1000=9200.答:当购进餐桌30张、餐
椅170张时,才能获得最大利润,最大利润是9200元.【点评】本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)利用一次函数的性质解决最值问题.23.【分析】(1)
根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥P
E,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=
xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.【点评】本题是相似形综合题,考查了相似三角形梯
形,二次函数最值等知识点,解题的关键是学会利用参数构建二次函数解决问题,属于中考常考题型.24.【分析】(1)①利用等腰三角形的性质,三角形内角和定理解决问题即可.②如图1中,连接CF,在FB上取一点T,使得F
T=CF,连接CT.证明△BCT≌△ACF(SAS)可得结论.(2)①如图2中,利用圆周角定理解决问题即可.②结论:BF=AF+FG.如图2中,连接CF,在FB上取一点T,使得FT=CF,连接CT.证明△BCT∽△ACF,推出==,推出BT=AF可得
结论.(3)如图3中,连接CF,BC,在BF上取一点T,使得FT=CF.构造相似三角形,利用相似三角形的性质解决问题即可.【解答】(1)①解:如图1中,∵点E是点C关于AM的对称点,∴∠AGE=90°,AE=AC,∠1=∠2.∵正△ABC中,∠BAC=
60°,AB=AC,∴AE=AB,得∠3=∠4.在△ABE中,∠1+∠2+60°+∠3+∠4=180°,∴∠1+∠3=60°.在△AEG中,∠FEG+∠3+∠1=90°,∴∠FEG=30°.故答案为60,30.②证明
:如图1中,连接CF,在FB上取一点T,使得FT=CF,连接CT.∵C,E关于AM对称,∴AM垂直平分线段EC,∴FE=FC,∴∠FEC=∠FCE=30°,EF=2FG,∴∠CFT=∠FEC+∠FCE=60°,∵FC=FT,∴△CFT是等
边三角形,∴∠ACB=∠FCT=60°,CF=CT=FT,∴∠BCT=∠ACF,∵CB=CA,∴△BCT≌△ACF(SAS),∴BT=AF,∴BF=BT+FT=AF+EF=AF+2FG.(2)解:①如图2中,∵AB=AC=AE,∴点A是△E
CB的外接圆的圆心,∴∠BEC=∠BAC,∵∠BAC=90°,∴∠FEG=45°.故答案为45.②结论:BF=AF+FG.理由:如图2中,连接CF,在FB上取一点T,使得FT=CF,连接CT.∵AM⊥EC,CG=CE,∴FC=EF,∴∠FEC
=∠FCE=45°,EF=FG,∴∠CFT=∠FEC+∠FCE=90°,∵CF=CT,∴△CFT是等腰直角三角形,∴CT=CF,∵△ABC是等腰直角三角形,∴BC=AC,∴=,∵∠BCA=∠TCF=45°,∴∠BCT=∠ACF,∴△BCT∽△A
CF,∴==,∴BT=AF,∴BF=BT+TF=AF+FG.(3)如图3中,连接CF,BC,在BF上取一点T,使得FT=CF.∵AB=AC,∠BAC=α,∴=sinα,∴=2•sinα,∵AB=AC=AE,∴∠BEC=∠BAC=α,EF=,∵FC=FE,∴∠FEC=∠FCE=α,∴∠CFT=∠F
EC+∠FCE=α,同法可证,△BCT∽△ACF,∴==2•sinα,∴BT=2AF•sinα,∴BF=BT+FT=2AF•sinα+EF.即BF=2AF•sinα+.故答案为:BF=2AF•sinα+.【点评】本题属于四边形综合题,考查了等腰三角形的性质,全等
三角形的判定和性质,相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.25.【分析】(1)先求出点A,点B坐标,利用待定系数法可求解析式;(2)分
两种情况讨论,利用平行线之间的距离相等,可求OP解析式,EP''的解析式,联立方程组可求解;(3)过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m﹣2),可求MF的长,由三角形面积公式可求△MAB的面积=﹣(m﹣2)2+4,利用二次函数的性质可求点M坐标,过点O作∠KOB
=30°,过点N作KN⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,由直角三角形的性质可得KN=ON,可得MN+ON=MN+KN,则当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,由直角三角形的性质可求
解.【解答】解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a=,∴抛物线解析式为:y=(x+1)(x
﹣4)=x2﹣x﹣2;(2)如图1,当点P在直线AB上方时,过点O作OP∥AB,交抛物线于点P,∵OP∥AB,∴△ABP和△ABO是等底等高的两个三角形,∴S△PAB=S△ABO,∵OP∥AB,∴直线PO的解析式为y=x,联立方程组可得,解得:或,∴
点P(2+2,1+)或(2﹣2,1﹣);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',连接AP'',BP'',∴AB∥EP''∥OP,OB=BE,∴S△AP''B=S△ABO,∵EP''∥AB,且
过点E(0,﹣4),∴直线EP''解析式为y=x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m
,m﹣2),∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN
⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,∵∠KOB=30°,KN⊥OK,∴KN=ON,∴MN+ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,∵∠K
OB=30°,∴直线OK解析式为y=x,当x=2时,点Q(2,2),∴QM=2+3,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM=QM=+,∴MN+ON的最小值为+.【点评】本题是二次函数综合题,考查
了待定系数法求解析式,二次函数的性质,直角三角形的性质,平行线的性质,垂线段最短等知识,利用数形结合的思想把代数和几何图形结合起来是本题的关键.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/9/214:15:02;用户:183661
85883;邮箱:18366185883;学号:22597006获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com