【文档说明】福建省部分地市2023届高中毕业班适应性练习数学试卷答案及评分细则.pdf,共(21)页,1.494 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-d96187e9afd090e92dc794d5289da584.html
以下为本文档部分文字说明:
数学参考答案及评分细则第1页(共20页)福建省2023届高中毕业班适应性练习卷数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应
的评分细则。2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。4.只给整
数分数。选择题和填空题不给中间分。一、选择题:本大题考查基础知识和基本运算。每小题5分,满分40分。1.D2.B3.C4.A5.D6.D7.A8.B二、选择题:本大题考查基础知识和基本运算。每小题5分,满分20分。全部选对的得5分,部分选对的得2分,有选错的得0分。9.B
C10.ABD11.ACD12.BD三、填空题:本大题考查基础知识和基本运算。每小题5分,满分20分。13.2yx=−,2yx=−+(只需填其中的一个即可)14.215.1,2216.3a,221,233aa
四、解答题:本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.本小题主要考查正弦定理、余弦定理、三角恒等变换、三角形面积及平面向量等基础知识,考查直观想象能力、逻辑推理能力、运算求解能力等,考查化归与转化思想、函数与方程思想、数形结合思想等,考查数学
运算、逻辑推理、直观想象等核心素养,体现基础性和综合性.满分10分.解法一:(1)因为π2sin6bcA=+,在ABC△中,由正弦定理得,sin2sinsin6BCA=+,.........................
........................................................................................1分又因为()()sinsinsinBACAC=−−=+,所以()sin2sinsin6ACCA+=
+,...............................................................................................2分展开得31sincoscossin2sinsincos22ACAC
CAA+=+,........................................................3分即sincos3sinsin0ACCA−=,因为sin0A,故cos3sinCC=,即3tan3C=..........
...............................................................4分又因为()0,C,所以6C=........................................
...................................................................5分(2)设ABC△的外接圆的圆心为O,半径为R,数学参考答案及评分细则第2页(共20页)因为2BABDBA=,所以()0BABDBA−=,即0BAAD
=,所以DABA⊥..............................................................................................................................
.........6分故BD是O的直径,所以BCCD⊥.在ABC△中,1c=,122sinsin6cRBCA===,所以2BD=....................................................7分在ABD△中,223ADBDAB
=−=.设四边形ABCD的面积为S,BCx=,CDy=,则224xy+=,..............................................8分11312222ABDCBDSSSABADBCCDxy=+=+=+△△....................
.................................................9分2231312222xy++=+,当且仅当2xy==时,等号成立.所以四边形ABCD面积最大值为312+...............
..........................................................................10分解法二:(1)同解法一;.................................................
..................................................................5分(2)设ABC△的外接圆的圆心为O,半径为R,BD在BA上的投影向量为BA,所以()2BABDBABABA==.又22BABDBABA
==,所以1=,所以BD在BA上的投影向量为BA.所以DABA⊥........................................................................
...............................................................6分故BD是O的直径,所以BCCD⊥.在ABC△中,1c=,122sinsin6cRBCA===,所以2BD=..............
......................................7分在ABD△中,223ADBDAB=−=.设四边形ABCD的面积为S,CBD=,π0,2,则2cosCB=,2sinCD=,............
.............................................................................................8分113sin2222ABDCBDSSSABAD
CBCD=+=+=+△△...................................................................9分当π22=时,S最大,所以四边形ABCD面积最大值为312+..............................
...................10分解法三:(1)同解法一;...............................................................................
....................................5分数学参考答案及评分细则第3页(共20页)(2)设ABC△的外接圆的圆心为O,半径为R,因为2BABDBA=,所以()0BABDB
A−=,即0BAAD=,所以DABA⊥............................................................................................................................
...........6分故BD是O的直径,所以BCCD⊥.在ABC△中,1c=,122sinsin6cRBCA===,所以2BD=.................................
...................7分在ABD△中,223ADBDAB=−=.设四边形ABCD的面积为S,点C到BD的距离为h,则113222ABDCBDSSSABADBDhh=+=+=+△△..............................................
...........................9分当1hR==时,S最大,所以四边形ABCD面积最大值为312+..............................................10分解法四:(1)同解法一;.........................
..........................................................................................5分(2)设ABC△的外接圆的圆心为O,半径为R,在ABC△中,1c=,122sinsin6cRB
CA===,.........................................................................6分故ABC△外接圆O的半径R=1.即1OAOBAB===,所以
π3AOB=.如图,以ABC△外接圆的圆心为原点,OB所在直线为x轴,建立平面直角坐标系xOy,则13,22A,()1,0B.因为C,D为单位圆上的点,设()cos,sinC,(
)cos,sinD,其中()()0,2π0,2,.所以()13,cos1,sin22BABD=−=−,,.........................................................
..........................7分代入2BABDBA=,即1BABD=,可得113cossin1222−++=,.......................................8分即1sin62−=.由()0,2可知π
π11π666−−,,所以解得ππ=66−或π5π=66−,即π3=或π=.数学参考答案及评分细则第4页(共20页)当π3=时,A,D重合,舍去;当π=时,BD是O的直径.设四边形ABCD的面积为S,则1313sinsin2222ABDCBDSS
SBDBD=+=+=+△△,.......................................................9分由()0,2π知sin1,所以当3π2=时,即C的坐标为()0,1−时,S最大,所以四边形ABCD面积最大值为312+........
.................................................................................10分18.本小题主要考查指数与对数基本运算、递推数列、等差数列、等
比数列及数列求和等基础知识,考查运算求解能力、逻辑推理能力和创新能力等,考查化归与转化思想、分类与整合思想、函数与方程思想、特殊与一般思想等,考查逻辑推理、数学运算等核心素养,体现基础性、综合性和创新性.满分12分.解法一:(1)由212122lognnnaaa−++=,得212
122nnaana−++=,.............................................................2分则2123222nnaana++++=,从而212121232121232
222222nnnnnnnaaaaaaannaa−+++−+++++++==,.........................................3分又21214222162nnaannaa+++==,...................
...........................................................................................4分所以21212+32124nnn
naaaa−++++=,......................................................................................................5分即212+3212nnnaaa−++=,
所以21na−是等差数列.............................................................................6分(2)设等差数列21na−的公差为d.当1n=时,1322logaaa+=,即
321log8a+=,所以32a=,所以311daa=−=,.........................................................................
............................7分所以数列21na−是首项为1,公差为1的等差数列,所以21nan−=;.....................................
..................................................................................................8分又()21211212222nnnnaanna−+++++===;
.......................................................................................................9分()()9123456789135792468Saaaaaaaaaaaaa
aaaaa=++++++++=++++++++()()3579123452222156806952023=++++++++=+=,又1110910695227432023SSa=+=+=;数学参考答案及评分细则第5页(共20页)又0na,则1nnSS+,且910
2023SS,..................................................................................11分所以n的最小值为10...........
............................................................................................................
..12分解法二:(1)由20na,且2122216nannaa++=,则()2122222loglog16nannaa++=,..............................................................................
..............................2分得2222221loglog4nnnaaa+++=,.....................................................................................
.....................4分因为212122lognnnaaa−++=,2123222lognnnaaa++++=,所以()()2121212321=4nnnnnaaaaa−++++++
+,........................................................................................5分即21232+12nnnaaa−++=,所以21na−是等差数列.........
......................................................................6分(2)设等差数列21na−的公差为d.当1n=时,1322logaa
a+=,即321log8a+=,所以32a=,所以311daa=−=,.....................................................................................................7分所以数
列21na−是首项为1,公差为1的等差数列,所以21nan−=;........................................................................
............................................................8分又212122lognnnaaa−++=,所以()21211212222nnnnaanna−+++++===;..............................
..................................................................9分当kN时,21232kkSaaaa=++++()()135212462kkaaaaaaaa−=+++++++++()()3
57211232222kk+=+++++++++()()841123kkk−+=+,()()()2121228411124822323kkkkkkkkkkSSa+−−++−=−=+−=+,数学参考答案及评分细则第6页(共20页)所以5925156248695202323SS−
−==+=,()51025841562743202323SS−==+=,又0na,则1nnSS+,且9102023SS,..........................................................
........................11分所以n的最小值为10.............................................................................................
............................12分解法三:(1)同解法一;...........................................................................................
........................6分(2)设等差数列21na−的公差为d.当1n=时,1322logaaa+=,即321log8a+=,所以32a=,所以311daa=−=,...................
..................................................................................7分所以数列21na−是首项为1,公差为1的等差数列,所以21nan−=;.........
.......................................................................................................................
....8分又()21211212222nnnnaanna−+++++===;.........................................................................
...........................9分当kN时,2112321kkSaaaa−−=++++()()1352124622kkaaaaaaaa−−=+++++++++()()357211232222kk−=+++++++++()()()1184111148214
23kkkkkk−−−++−=+=+−,所以()4925184156695202323SS−−==+=,25110910=695227432023SSa+=++=.又0na,则1nnS
S+,且9102023SS,..................................................................................11分所以n
的最小值为10.....................................................................................................................
....12分19.本小题主要考查一元线性回归模型、条件概率与全概率公式等基础知识,考查数学建模能力、运算求解能力、逻辑推理能力、直观想象能力等,考查统计与概率思想、分类与整合思想等,考查数学抽象、数学建模和数学运算等核心素养,体现应用性和创新性.满分12分.解:(1)由散点图判断ln(
2012)xycd−+=适宜作为该机场飞往A地航班放行准点率y关于年份数x数学参考答案及评分细则第7页(共20页)的经验回归方程类型.............................................
..............................................................................1分令ln(2012)tx=−,先建立y关于t的线性回归方程.由于10110222110
1226.8101.580.4ˆ427.7101.510iiiiitytyctt==−−===−−,......................................................................
..2分ˆˆ80.441.574.4dyct=−=−=,.......................................................................................................3分该机场飞往A地航
班放行准点率y关于t的线性回归方程为7.444ˆyt+=,因此y关于年份数x的回归方程为ln(2012)7ˆ444.xy−+=............................................................
4分所以当2023x=时,该机场飞往A地航班放行准点率y的预报值为ln(20232012)74.44ln1174.4ˆ42.4074.4844y−+=++==.所以2023年该机场飞往A地航班放行准点率y的预报值为84%............................
.....................5分(2)设1A=“该航班飞往A地”,2A=“该航班飞往B地”,3A=“该航班飞往其他地区”,C=“该航班准点放行”,.......................
..............................................................................................6分则()10.2PA=,()20.2PA=,()30.6PA=,()10.84PC
A=,()20.8PCA=,()30.75PCA=..........................................................................7分
(i)由全概率公式得,()()()()()()()112233PCPAPCAPAPCAPAPCA=++................................................................8分0.840.20.80.20.750.
60.778=++=,所以该航班准点放行的概率为0.778................................................................................................9分(ii)()()()
()()()11110.20.840.778PAPCAPACPACPCPC===,()()()()()()22220.20.80.778PAPCAPACPACPCPC===,()()()()()()33330.60.750.778PAPCAPACPACPCP
C===,..............................................................11分因为0.60.750.20.840.20.8,所以可判断该航
班飞往其他地区的可能性最大......................................................................12分20.本小题主要考查直线与直线、直线与平面、平面与平面
的位置关系,空间几何体的体积、平面与平面的夹角等基础知识;考查直观想象能力,逻辑推理能力,运算求解能力等;考查化归与转化思想,数数学参考答案及评分细则第8页(共20页)形结合思想,函数与方程思想等;考查直观想象,逻辑推理,数学运算等核心素养;体
现基础性和综合性.满分12分.解法一:(1)如图1,取AB中点O,连接PO,CO.因为2PAPB==,2AB=,所以POAB⊥,1PO=,1BO=.又因为ABCD是菱形,60ABC=,所以COAB⊥,3CO=.因为2PC=,所以222PCPOCO=+,所以POCO⊥.又因为AB
平面ABCD,CO平面ABCD,ABCOO=,所以PO⊥平面ABCD.......................................................................
.................................................2分因为ADBC∥,BCPBC平面,ADPBC平面,所以ADPBC∥平面,所以1133143343DPBCAPBCPABCABCVVVPOS−−−=====△............
....3分因为3162MPBCDPBCVV−−==,...................................................................................
..........................4分所以点M到平面PBC的距离是点D到平面PBC的距离的12,所以PMMD=......................................................................
...............................................................5分(图1)(图2)(2)由(1)知,BOCO⊥,POBO⊥,POCO⊥,如图2,以O为坐标原
点,OC,OB,OP的方向分别为x轴,y轴,z轴正方向建立空间直角坐标系,............................................................................................................
...........................................6分则()0,1,0A−,()0,1,0B,()3,0,0C,()3,2,0D−,()0,0,1P,所以31,1,22M−.则()3,1,0AC=,()3,1,0BC=−,(
)3,3,0BD=−,()0,1,1AP=,31,1,22CM=−−.因为QAP,设()0,,AQAP==,则()3,1,CQAQAC=−=−−,数学参考答案及评分细则第9页(共20页)因为B
D∥,Q,C,M,故存在实数,ab,使得CQaCMbBD=+,...............7分所以333,231,,2ababa−+=−−−=−=解得4,31,32.3ab=
=−=所以123,,33CQ=−−............................................................................................................
...........8分设平面BCQ的法向量为1(,,)xyz=n,则110,0,CQBC==nn即230,3330yzxxy−−+=−=.取1x=,得到平面BCQ的一个法向量()11,3,23=n........
.....................................................10分设平面BCQ与平面ABCD夹角是,又因为()20,0,1=n是平面ABCD的一个法向量,...........................................
..............................11分则1212123coscos,2===nnnnnn.所以平面BCQ与平面ABCD夹角的余弦值是32................................
......................................12分解法二:(1)如图3,取AB中点O,连接PO,CO,因为2PAPB==,2AB=,所以POAB⊥,1PO=,1BO=,又因为ABCD是菱形,60ABC=
,所以COAB⊥,3CO=.因为2PC=,所以222PCPOCO=+,所以POCO⊥.因为AB平面PAB,PO平面PAB,ABPOO=,所以CO⊥平面PAB.........................................................
..................................................................2分11133223323APBCCABPABPVVCOS−−===
=△................................................................3分过M作MNAD∥交AP于点N,ADBC∥,所以MNBC∥,又BCPBC平面
,MNPBC平面,(图3)数学参考答案及评分细则第10页(共20页)所以MNPBC∥平面,所以1336MPBCNPBCCNBPNBPVVVCOS−−−====△,因为13CABPABPVCOS−=△,13CNBPNBP
VCOS−=△所以2ABPNBPSS=△△,........................................................................................................................
..4分所以N是PA的中点,所以M是PD的中点,所以PMMD=......................................................5分(2)在平面ABCD内,过C作EFBD∥交AD延长线于点E,交AB延长线于点
F,因为ABCD是菱形,所以ADDE=.如图4,在平面PAD内,作PPAE∥交EM的延长线于点P,设EP交AP于点Q.所以,四边形EDPP是平行四边形,,PPDEPPDE=∥,所以QPPQAE△∽△,所以12PQPPAQAE==
,所以点Q是线段PA上靠近P的三等分点...................................................................................
......7分如图5,在平面PAB内,作QTPO∥,交AB于T,因为PO⊥平面ABCD,所以QT⊥平面ABCD,所以QT⊥BC,因为1PO=,2233QTPO==,......................................................
...................................................8分在平面ABCD内,作TNBC⊥,交BC于点N,连接QN,过A作AKTN∥交BC于K,在ABK△中,2AB=,60ABK=,所以332AKAB==,(图5)所以22333TNAK==
,...................................................................................................................
.9分因为QT⊥BC,TNBC⊥,QTTNT=,所以BC⊥平面QTN,因为QN平面QTN,所以BCQN⊥.所以QNT是二面角ABCQ−−的平面角............................................
......................................11分数学参考答案及评分细则第11页(共20页)在RtQTN△中,3tan3QTQNTNT==,所以3cos2QNT=.所以平面BCQ与平面ABCD夹角的余弦值是32..................
....................................................12分解法三:(1)同解法一;.....................................................
............................................................................5分(2)由(1)知,BOCO⊥,POBO⊥,POCO⊥,如图2,以O为坐标原点,OC,OB,OP的方向分别为x轴,y轴,
z轴正方向建立空间直角坐标系,......................................................................................................................................
.................6分则(0,1,0)A−,(0,1,0)B,(3,0,0)C,(3,2,0)D−,(0,0,1)P,所以31(,1,)22M−.则(3,1,0)AC=,(3,1,0)BC=−,(3,3,0)BD=−,(0,1,1)
AP=,31(,1,)22CM=−−.设平面的法向量为(,,)xyz=n,则0,0BDCM==,nn即330,31022xyxyz−=−−+=.取1y=,得到平面的一个法向量()3,1,5=n...................
.......................................................7分因为QAP,设()0,,AQAP==,则()3,1,CQAQAC=−=−−,因为31
50CQ=−+−+=n,所以23=,所以123,,33CQ=−−.......................................8分设平面BCQ的法向量为1111(,,)xyz=n,则110,0CQBC==
,nn即11111230,3330yzxxy−−+=−=.取11x=,得到平面BCQ的一个法向量()11,3,23=n............................................................10分设平面BCQ与平面ABCD夹角是,又因为
()20,0,1=n是平面ABCD的一个法向量,.........................................................................11分则1212123coscos,2===nnnnnn.所以平面BCQ与平
面ABCD夹角的余弦值是32......................................................................12分21.本小题主要考查圆、椭
圆的标准方程及简单几何性质,直线与椭圆的位置关系等基础知识;考查运算数学参考答案及评分细则第12页(共20页)求解能力,逻辑推理能力,直观想象能力和创新能力等;考查数形结合思想,函数与方程思想,化归与转化思想等;考查直观
想象,逻辑推理,数学运算等核心素养;体现基础性,综合性与创新性.满分12分.解法一:(1)由题意得,()11,0A−,()21,0A.因为D为BC中点,所以1ADBC⊥,即12ADAC⊥,.................
..................................................1分又1PEAD∥,所以2PEAC⊥,又E为2AC的中点,所以2PAPC=,所以1211124PAPAPAPCACAA+=+==,所以点P的轨迹是以12,
AA为焦点的椭圆(左、右顶点除外)................................................2分设:22221xyab+=(xa),其中0ab,222abc−=.则24a=,2a=,1c=,223bac=−=.....
.........................................................................3分故:22143xy+=(2x)....................................................
......................................................4分(2)结论③正确.下证:12QCC△的面积是定值................................................................
.......5分由题意得,()12,0B−,()22,0B,()10,1C−,()20,1C,且直线2l的斜率不为0,可设直线2l:1xmy=−,()()1122,,,MxyNxy,且12x,22x.由221,431,xyxmy+==−得()2234
690mymy+−−=,.................................................................................6分所以12122269,3434myyyymm−+==
++,............................................................................................7分所以()121223myyyy=−+.直线1BM的方程为:()
1122yyxx=++,直线2BN的方程为:()2222yyxx=−−,....................8分由()()11222,22,2yyxxyyxx=++=−−数学参考答案及评分细则第13页(共20页)得()()21122222yxxxyx++=−−.......
..................................................................................................................
...9分()()211213ymyymy+=−1221213myyymyyy+=−()()12212132332yyyyyy−++=−+−121231229322yyyy−−=−−13=,解得x4=−...
...................................................................................................................................11分故点Q在直线4
x=−,所以Q到12CC的距离4d=,因此12QCC△的面积是定值,为121124422CCd==.........................................................12分解法二:(1)同解法一..............
......................................................................................................4分(2)结论③正确.下证:12QCC△的面积是定值...................
....................................................5分由题意得,()12,0B−,()22,0B,()10,1C−,()20,1C,且直线2l的斜率不为0,可设直线2l:1xmy=−,()()1122,,,MxyNxy,且12x
,22x.由221,431,xyxmy+==−得()2234690mymy+−−=,......................................................
...........................6分所以12122269,3434myyyymm−+==++,..........................................................................................
..7分所以()121223myyyy=−+.直线1BM的方程为:()1122yyxx=++,直线2BN的方程为:()2222yyxx=−−,....................8分由()()11222,22,2yyx
xyyxx=++=−−得()()()()2112211222222yxyxxyxyx++−=+−−.......................................................................
.................................9分()()()()2112211213213ymyymyymyymy++−=+−−1221212323myyyyyy+−=+数学参考答案及评分
细则第14页(共20页)()()121221212323243myyyyyyyy++−+==−+.........................................................................
...11分故点Q在直线4x=−,所以Q到12CC的距离4d=,因此12QCC△的面积是定值,为121124422CCd==.....................................................
....12分解法三:(1)同解法一.............................................................................................................
.......4分(2)结论③正确.下证:12QCC△的面积是定值.......................................................................5分由题意得,()12,0B−,()22,0B,()10,1C−,()20
,1C,直线2l的斜率不为0.(i)当直线2l垂直于x轴时,2l:1x=−,由221,431xyx+==−得1,32xy=−=−或1,3.2xy=−=不妨设331,,1,22MN−−−,则直线1BM的方程为:()322yx=+,直线2BN的方程
为:()122yx=−,由()()32,2122yxyx=+=−得4,3,xy=−=−所以(4,3)Q−−,故Q到12CC的距离4d=,此时△12QCC的面积是121124422CCd
==.............................6分(ii)当直线2l不垂直于x轴时,设直线l:()1ykx=+,()()1122,,,MxyNxy,且12x,22x.由()221,431,xyykx+==+得()()22224384120
kxkxk+++−=,.................................................................7分所以221212228412,4343kkxxxxkk−−+==++....................................
.........................................................8分直线1MB的方程为:()1122yyxx=++,直线2MB的方程为:()2222yyxx=−−,.........
............9分由()()11222,22,2yyxxyyxx=++=−−数学参考答案及评分细则第15页(共20页)得()()()()2112211222222yxyxxyxyx++−=+−−..........
............................................................................................10分()()()()()()()()21122112121221212
kxxkxxkxxkxx++++−=++−+−12121242634xxxxxx−+=++.下证:121212426434xxxxxx−+=−++.即证()121212426434xxxxxx−
+=−++,即证()121241016xxxx=−+−,即证22224128410164343kkkk−−=−−++,即证()()()22244121081643kkk−=−−−+,上式显然成立,...........
......................................................................................................................11分故点Q在直线4x=−,所以Q到12CC的距
离4d=,此时12QCC△的面积是定值,为121124422CCd==.由(i)(ii)可知,12QCC△的面积为定值..............................................
....................................12分解法四:(1)同解法一...........................................................................
.........................................4分(2)结论③正确.下证:12QCC△的面积是定值.......................................................................5分由题意得,()
12,0B−,()22,0B,()10,1C−,()20,1C,且直线2l的斜率不为0,可设直线2l:1xmy=−,()()1122,,,MxyNxy,且12x,22x.由221,431,xyxmy+==−得()2234690mymy+−−=,............
.....................................................................6分所以12122269,3434myyyymm−+==++.....................
........................................................................7分直线1BM的方程为:()1122yyxx=++,直线2BN的方程为:()2222yyxx=−−,....................8分数
学参考答案及评分细则第16页(共20页)因为2222143xy+=,所以222yx−22234xy+=−,故直线2BN的方程为:()222324xyxy+=−−.由()()11222,2232,4yyxx
xyxy=+++=−−得()()1212422322yyxxxx−=−+++................................................................................
...............................9分()()12124311yymxmy=−++()1221212431yymyymyy=−+++()2224939634mmm−=−−+++3=,解得x4=−................
....................................................................................................
..................11分故点Q在直线4x=−,所以Q到12CC的距离4d=,因此12QCC△的面积是定值,为121124422CCd==.................................................
........12分22.本小题主要考查导数及其应用、函数的单调性、不等式等基础知识,考查逻辑推理能力、直观想象能力、运算求解能力和创新能力等,考查函数与方程思想、化归与转化思想、分类与整合思想等,考查逻辑推理、
直观想象、数学运算等核心素养,体现基础性、综合性和创新性.满分12分.解法一:(1)()()1exfxxa=++,.........................................................................................
........1分故1xa−−时,()0fx;1xa−−时,()0fx.............................................................
.......2分当10a−−,即1a−时,()fx在()0,1a−−单调递减,在()1,a−−+单调递增;当10a−−,即1a−≥时,()fx在()0,+单调递增.综上,当1a−时,()fx在()0,1a−−单调递减,
在()1,a−−+单调递增;当1a−≥时,()fx在()0,+单调递增.............................................................................................4分(2)不存在01,,
axx,且01xx,使得曲线()yfx=在0xx=和1xx=处有相同的切线.............5分证明如下:假设存在满足条件的01,,axx,因为()fx在()()00,xfx处的切线方程为()()()000yfxfxxx−=−数学参考答案及评分细则第17页(共20页)即
()()0020001eexxyxaxaxax=+++−−,.......................................................................................6分同理()fx在()()11,xfx处的切线方程为(
)()1121111eexxyxaxaxax=+++−−,且它们重合,所以()()()()0101012200111e1e,ee,xxxxxaxaaxaxaxax++=++−−=−−.......................................
............................7分整理得()()()()2201110011xaaxaxxaaxax++−−=++−−,即()()20101120xxaxxaa+++++=,()()()20
101111xxaxxa+++++=,所以()()01111xaxa++++=,...............................................................................................
...........8分由0101(1)e(1)exxxaxa++=++两边同乘以1ea+,得011101(1)e(1)exaxaxaxa++++++=++,...................................................
...........................................9分令001txa=++,111txa=++,则010101ee,1,tttttt==且01tt,由011tt=得011tt=,代入0101eetttt=得1112
1eettt=,两边取对数得11112lnttt=+...........................10分令1()2lngtttt=+−,当0t时,1()2lngtttt=+−,()222121()10tgtttt+=++=≥,所以()gt在(0,)+上单调递增,又()10g
=,所以11t=,从而01t=,与01tt矛盾;.........11分当0t时,()1()2lngtttt=−+−,()222121()10tgtttt+=++=≥,所以()gt在(,0)−上单调递增,又()10g−=,所以11t=−,从而01t=−,与01tt矛盾;综上,不存在0
1,tt,使得010101ee,1,tttttt==且01tt.故不存在01,,axx且01xx,使得曲线()yfx=在0xx=和1xx=处有相同的切线.....................12分解法二:(1)同解法一;.........
...........................................................................................................4分数学参考答案及评分细则第18页(共20页)(2)不存在0
1,,axx,且01xx,使得曲线()yfx=在0xx=和1xx=处有相同的切线.............5分证明如下:假设存在满足条件的01,,axx,因为()fx在()()00,xfx处的切线方程为()()()000yfxfxxx−=−即()()()00000001ee1exxx
yxaxxaxxa=++++−++,......................................................................6分同理()fx在()()11,
xfx处的切线方程为()()()11111111ee1exxxyxaxxaxxa=++++−++,且它们重合,所以()()()()()()010011010001111e1e,e1ee1e,xxxxxxxaxaxaxxaxaxxa++=+++−++=+−++......
....................7分整理得()()011110001(1)1(1)xaxaxxaxaxaxxa+++−++=+++−++,令001txa=++,111txa=++,可得011tt=....
................................................................................8分由0101(1)e(1)exxxaxa++=++两边同乘以1ea+,得011101(1)e(1)exaxaxaxa
++++++=++,则010101ee,1,tttttt==且01tt,....................................................9分令()ethtt
=,则()()01htht=,且01tt.由(1)知,当1t−时,()ht单调递增,当1t−时,()ht单调递减,又当0t时,()0ht,当0t时,()0ht,所以若01,tt存在,不妨设1010tt−,设10tmt=,1m,又0
11tt=,所以201tm=,则01tm=−,由0110eetttt=,得0000eemttmtt=即00eemttm=,则00lnmmtt+=,所以0ln1mtm=−,所以1ln1mmm−=−,即1ln0mmm+−=,.
...............................................................................11分令1()2lngxxxx=−+,1x≥,则2
2221(1)()10xgxxxx−=−−=−,所以()gx在(1,)+上单调递减,所以当1x时,()(1)0gxg=,数学参考答案及评分细则第19页(共20页)即12lnxxx−,取xm=,即1ln0mmm+−,所
以1ln0mmm+−=在1m时无解,综上,不存在01,tt,使得010101ee,1,tttttt==且01tt.故不存在01,,axx且01xx,使得曲线()yfx=在0xx=和1xx=处有相同的切线........
.............12分解法三:(1)同解法一;....................................................................................................................
4分(2)不存在01,,axx,且01xx,使得曲线()yfx=在0xx=和1xx=处有相同的切线.............5分证明如下:假设存在满足条件的01,,axx,因为()fx在()()00,xf
x处的切线方程为()()()000yfxfxxx−=−即()()0020001eexxyxaxaxax=+++−−,.................................................
......................................6分同理()fx在()()11,xfx处的切线方程为()()1121111eexxyxaxaxax=+++−−,且它们重合,所以()()()()0
101012200111e1e,ee,xxxxxaxaaxaxaxax++=++−−=−−......................................................
.............7分整理得()()()()2201110011xaaxaxxaaxax++−−=++−−,即()()20101120xxaxxaa+++++=,()()()20101111xxaxxa+++++=,所以()()01111xax
a++++=,.......................................................................................................
...8分由0101(1)e(1)exxxaxa++=++两边同乘以1ea+,得011101(1)e(1)exaxaxaxa++++++=++,................................................
..............................................9分令001txa=++,111txa=++,则010101ee,1,tttttt==且01tt,令()ethtt=,则()(
)01htht=,且01tt.由(1)知,当1t−时,()ht单调递增,当1t−时,()ht单调递减,又当0t时,()0ht,当0t时,()0ht,数学参考答案及评分细则第20页(共20页)所以若01,tt存在,不妨设1010tt
−,则0101eetttt−=−,()()0011lnlntttt−+=−+,所以()()()()01011lnlntttt−−−=−−−...................................................................
.................................................11分以下证明()()()()()()010101lnlntttttt−−−−−−−−.令1()2lngxxxx=−+,1x≥,则22221(1)(
)10xgxxxx−=−−=−,所以()gx在(1,)+上单调递减,所以当1x时,()(1)0gxg=,因为101tt−−,所以100tgt−−,011001ln0tttttt−−−−+−−−,整理得()()()()()
()010101lnlntttttt−−−−−−−−.因为()()()()01011lnlntttt−−−=−−−,所以()()011tt−−,与011tt=矛盾;所以不存在01,tt,使得010101ee,1,ttttt
t==且01tt.故不存在01,,axx且01xx,使得曲线()yfx=在0xx=和1xx=处有相同的切线.....................12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com